JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Adult stem cell lineage tracing and deep tissue imaging
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 48, Issue 12,  2015, pp.655-667
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2015.48.12.249
 Title & Authors
Adult stem cell lineage tracing and deep tissue imaging
Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung;
  PDF(new window)
 Abstract
Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.
 Keywords
Adult stem cells;Advanced imaging;Intravital imaging;Lineage tracing;Tissue clearing;
 Language
English
 Cited by
1.
Deep insights: intravital imaging with two-photon microscopy, Pflügers Archiv - European Journal of Physiology, 2016, 468, 9, 1505  crossref(new windwow)
2.
Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair, Stem Cell Reviews and Reports, 2016, 12, 4, 421  crossref(new windwow)
3.
Three-dimensional cell culture model utilization in cancer stem cell research, Biological Reviews, 2016  crossref(new windwow)
 References
1.
Brenner S (1974) The Genetics of Caenorhabditis Elegans. Genetics 77, 71-94

2.
Sulston JE, Schierenberg E, White JG and Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119 crossref(new window)

3.
Sulston JE and Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56, 110-156 crossref(new window)

4.
Kimble J and Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70, 396-417 crossref(new window)

5.
Kit S, Beck C, Graham OL and Graham O (1958) Effect of 5-Bromodeoxyuridine on Deoxyribonucleic Acid-Thymine Synthesis and Cell Metabolism of Lymphatic Tissues and Tumors Effect of 5-Bromodeoxyuridine on Deoxyribonucleic Acid- Thymine Synthesis and Cell Metabolism of Lymphatic Tissues and Tumors. Cancer Res 18, 598-602

6.
Gratzner HG (1982) Monoclonal antibody to 5-bromoand 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science (New York, N.Y.) 218, 474-475 crossref(new window)

7.
Trent JM, Gerner E, Broderick R and Crossen PE (1986) Cell cycle analysis using bromodeoxyuridine: Comparison of methods for analysis of total cell transit time. Cancer Genet Cytogenet 19, 43-50 crossref(new window)

8.
Miller MW and Nowakowski RS (1988) Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Res 457, 44-52 crossref(new window)

9.
Dolbeare F, Gratzner H, Pallavicini MG and Gray JW (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci U S A 80, 5573-5577 crossref(new window)

10.
Morstyn G, Pyke K, Gardner J, Ashcroft R, de Fazio A and Bhathal P (1986) Immunohistochemical identification of proliferating cells in organ culture using bromodeoxyuridine and a monoclonal antibody. J Histochem Cytochem 34, 697-701 crossref(new window)

11.
Gray JW, Dolbeare F, Pallavicini MG, Beisker W and Waldman F (1986) Cell cycle analysis using flow cytometry. Int J Radiat Biol Relat Stud Phys Chem Med 49, 237-255 crossref(new window)

12.
Kubbies M, Schindler D, Hoehn H and Rabinovitch PS (1985) Cell cycle kinetics by BrdU-Hoechst flow cytometry: an alternative to the differential metaphase labelling technique. Cell Tissue Kinet 18, 551-562

13.
Schulte DM, Shapiro I, Reincke M and Beuschlein F (2007) Expression and spatio-temporal distribution of differentiation and proliferation markers during mouse adrenal development. Gene Expr Patterns 7, 72-81 crossref(new window)

14.
Tanaka R, Tainaka M, Ota T et al (2011) Accurate determination of S-phase fraction in proliferative cells by dual fluorescence and peroxidase immunohistochemistry with 5-bromo-2’-deoxyuridine (BrdU) and Ki67 antibodies. J Histochem Cytochem 59, 791-798 crossref(new window)

15.
Chwalinski S, Potten CS and Evans G (1988) Double labelling with bromodeoxyuridine and [3H]-thymidine of proliferative cells in small intestinal epithelium in steady state and after irradiation. Cell Tissue Kinet 21, 317-329

16.
Barker N, van Es JH, Jaks V et al (2008) Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb Symp Quant Biol 73, 351-356 crossref(new window)

17.
Ito M, Liu Y, Yang Z et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11, 1351-1354 crossref(new window)

18.
Abremski K and Hoess R (1984) Bacteriophage P1 Site-specific Recombination. J Biol Chem 259, 1509-1514

19.
Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237, 752-757 crossref(new window)

20.
Tsien JZ, Chen DF, Gerber D et al (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317-1326 crossref(new window)

21.
Akagi K, Sandig V, Vooijs M et al (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25, 1766-1773 crossref(new window)

22.
Novak A, Guo C, Yang W, Nagy A and Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 155, 147-155

23.
Srinivas S, Watanabe T, Lin CS et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1, 4 crossref(new window)

24.
Mao X, Fujiwara Y, Chapdelaine A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326 crossref(new window)

25.
Cai D, Cohen KB, Luo T, Lichtman JW and Sanes JR (2013) Improved tools for the Brainbow toolbox. Nat Methods 10, 540-547 crossref(new window)

26.
Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134-144 crossref(new window)

27.
Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56-62 crossref(new window)

28.
Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007 crossref(new window)

29.
Van der Flier LG, Sabates-Bellver J, Oving I et al (2007) The Intestinal Wnt/TCF Signature. Gastroenterology 132, 628-632 crossref(new window)

30.
Van de Wetering M, Sancho E, Verweij C et al (2002) The β-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells. Cell 111, 241-250 crossref(new window)

31.
Barker N, Huch M, Kujala P et al (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build longlived gastric units in vitro. Cell Stem Cell 6, 25-36 crossref(new window)

32.
Bush PG, Wokosin DL and Hall AC (2008) Europe PMC Funders Group Two-versus one photon excitation laser scanning microscopy: Critical importance of excitation wavelength. 2008

33.
Wang E, Babbey CM and Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218, 148-159 crossref(new window)

34.
Denk W, Strickler JH and Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science (New York, N.Y.) 248, 73-76 crossref(new window)

35.
Kaiser W and Garrett CGB (1961) Two-photon Excitation in CaF2:EU2+. Phy Rev Lett 7, 229-232 crossref(new window)

36.
Abella ID (1962) Optical Double-Photon Absorption In Caesium Vapor. Phy Rev Lett 9, 453-455 crossref(new window)

37.
Goeppert-Mayer M (1930) Ueber Elementarakte mit zwei Quantenspruengen. 114

38.
Chen BC, Legant WR, Wang K et al (2014) Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998-1257998 crossref(new window)

39.
Dodt HU, Leischner U, Schierloh A et al (2007) Ultramicroscopy : three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4, 331-336 crossref(new window)

40.
Huisken J, Swoger J, Del Bene F, Wittbrodt J and Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 13-16 crossref(new window)

41.
Wu Y, Wawrzusin P, Senseney J et al (2013) Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31, 1032-1038 crossref(new window)

42.
Tomer R, Ye L, Hsueh B and Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9, 1682-1697 crossref(new window)

43.
Strobl F, Schmitz A and Stelzer EH (2015) Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat Protoc 10, 1486-1507 crossref(new window)

44.
Wolf S, Supatto W, Debrégeas G et al (2015) Wholebrain functional imaging with two-photon light-sheet microscopy. Nat Methods 12, 379-380 crossref(new window)

45.
Keller PJ and Ahrens MB (2015) Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron 85, 462-483 crossref(new window)

46.
Lemon WC, Pulver SR, Höckendorf B et al (2015) Whole-central nervous system functional imaging in larval Drosophila. Nat Commun 6, 7924 crossref(new window)

47.
Udan RS, Piazza VG, Hsu CW, Hadjantonakis AK and Dickinson ME (2014) Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development (Cambridge, England) 141, 4406-4414 crossref(new window)

48.
Keller PJ, Schmidt AD, Wittbrodt J and Stelzer EH (2011) Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold Spring Harb Protoc 2011, 1235-1243 crossref(new window)

49.
Tomer R, Khairy K, Amat F and Keller PJ (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9, 755-763 crossref(new window)

50.
Soderblom C, Luo X, Blumenthal E et al (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33, 13882-13887 crossref(new window)

51.
Spalteholz W (1914) Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen. Leipzig: S. Hirzel

52.
Becker K, Jährling N, Kramer ER, Schnorrer F and Dodt HU (2008) Ultramicroscopy: 3D reconstruction of large microscopical specimens. J Biophotonics 1, 36-42 crossref(new window)

53.
Dent JA, Polson AG and Klymkowsky MW (1989) A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 74, 61-74

54.
Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14, 1481-1488 crossref(new window)

55.
Ertürk A, Mauch CP, Hellal F et al (2012) Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 18, 166-171 crossref(new window)

56.
Ertürk A, Becker K, Jährling N et al (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7, 1983-1995 crossref(new window)

57.
Becker K, Jährling N, Saghafi S, Weiler R and Dodt HU (2012) Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One 7, e33916 crossref(new window)

58.
Chung K, Wallace J, Kim SY et al (2013) Structural and molecular interrogation of intact biological systems. Nature 497, 332-337 crossref(new window)

59.
Lee H, Park JH, Seo I, Park SH and Kim S (2014) Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Dev Biol 14, 48 crossref(new window)

60.
Yang B, Treweek JB, Kulkarni RP et al (2014) Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing. Cell 158, 945-958 crossref(new window)

61.
Blanpain C and Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14, 489-502 crossref(new window)

62.
Ritsma L, Ellenbroek SI, Zomer A et al (2014) Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362-365 crossref(new window)

63.
Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD and Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446, 185-189 crossref(new window)

64.
Alcolea MP, Greulich P, Wabik A, Frede J, Simons BD and Jones PH (2014) Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat Cell Biol 16, 615-622 crossref(new window)

65.
Doupé DP, Klein AM, Simons BD and Jones PH (2010) The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev Cell 18, 317-323 crossref(new window)

66.
Lopez-Garcia C, Klein AM, Simons BD and Winton DJ (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science (New York, N.Y.) 330, 822-825 crossref(new window)

67.
Snippert HJ, Schepers AG, van Es JH, Simons BD and Clevers H (2014) Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep 15, 62-69 crossref(new window)

68.
Klein AM, Nakagawa T, Ichikawa R, Yoshida S and Simons BD (2010) Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell 7, 214-224 crossref(new window)

69.
Ousset M, Van Keymeulen A, Bouvencourt G et al (2012) Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 14, 1131-1138 crossref(new window)

70.
Vermeulen L, Morrissey E, van der Heijden M et al (2013) Defining stem cell dynamics in models of intestinal tumor initiation. Science (New York, N.Y.) 342, 995-998 crossref(new window)

71.
Kozar S, Morrissey E, Nicholson AM et al (2013) Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13, 626-633 crossref(new window)

72.
Driessens G, Beck B, Caauwe A, Simons BD and Blanpain C (2012) Defining the mode of tumour growth by clonal analysis. Nature 488, 527-530 crossref(new window)

73.
Baker M (2010) Taking a long, hard look. Nature 466, 1137-1140 crossref(new window)

74.
Qian X, Goderie SK, Shen Q, Stern JH and Temple S (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 3152, 3143-3152

75.
Hiraoka Y, Sedat JW and Agard DA (1987) The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science (New York, N.Y.) 238, 36-41 crossref(new window)

76.
Lichtman JW and Conchello JA (2005) Fluorescence microscopy. Nat Methods 2, 910-919 crossref(new window)

77.
Kokkaliaris KD, Loeffler D and Schroeder T (2012) Advances in tracking hematopoiesis at the single-cell level. Curr Opin Hematol 19, 243-249 crossref(new window)

78.
Schroeder T (2008) Imaging stem-cell-driven regeneration in mammals. Nature 453, 345-351 crossref(new window)

79.
Cohen AR, Gomes FL, Roysam B and Cayouette M (2010) Computational prediction of neural progenitor cell fates. Nat Methods 7, 213-218 crossref(new window)

80.
Megason SG and Fraser SE (2003) Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech Dev 120, 1407-1420 crossref(new window)

81.
Megason SG and Fraser SE (2011) Current challenges in image analysis for in toto imaging of zebrafish. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, March 2011: 10.1109/ISBI.2011.5872739 crossref(new window)

82.
Krupa M, Mazur E, Szczepańska K, Filimonow K, Maleszewski M and Suwińska A (2014) Allocation of inner cells to epiblast vs primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8→16- and 16→32-cells). Dev Biol 385, 136-148 crossref(new window)

83.
Morris SA, Teo RT, Li H, Robson P, Glover DM and Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci U S A 107, 6364-6369 crossref(new window)

84.
Morris SA, Graham SJ, Jedrusik A and Zernicka-Goetz M (2013) The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos. Open Biol 3, 130104 crossref(new window)

85.
Bedzhov I and Zernicka-Goetz M (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032-1044 crossref(new window)

86.
Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262-265 crossref(new window)

87.
Koo BK, Stange DE, Sato T et al (2012) Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods 9, 81-83 crossref(new window)

88.
Schwank G, Andersson-Rolf A, Koo BK, Sasaki N and Clevers H (2013) Generation of BAC transgenic epithelial organoids. PLoS One 8, e76871 crossref(new window)

89.
Schwank G, Koo BK, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653-658 crossref(new window)

90.
Sato T and Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science (New York, N.Y.) 340, 1190-1194 crossref(new window)

91.
Greer LF 3rd and Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17, 43-74 crossref(new window)

92.
Kocher B and Piwnica-Worms D (2013) Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov 3, 616-629 crossref(new window)

93.
Woolfenden S, Zhu H and Charest A (2009) A Cre/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis (New York, N.Y. : 2000) 47, 659-666 crossref(new window)

94.
Sato A, Klaunberg B and Tolwani R (2004) In vivo bioluminescence imaging. Comp Med 54, 631-634

95.
Wood S (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66, 550-568

96.
Lehr HA, Leunig M, Menger MD, Nolte D and Messmer K (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143, 1055-1062

97.
Makale M (2007) Intravital imaging and cell invasion. Methods Enzymol 426, 375-401 crossref(new window)

98.
Kedrin D, Gligorijevic B, Wyckoff J et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5, 1019-1021 crossref(new window)

99.
Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67, 2649-2656 crossref(new window)