Advanced SearchSearch Tips
Stem cell maintenance by manipulating signaling pathways: past, current and future
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 48, Issue 12,  2015, pp.668-676
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2015.48.12.215
 Title & Authors
Stem cell maintenance by manipulating signaling pathways: past, current and future
Chen, Xi; Ye, Shoudong; Ying, Qi-Long;
  PDF(new window)
Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways.
Adult stem cells;Embryonic stem cell self-renewal;Neural stem cells;Stem cells;Wnt/β-catenin pathway;
 Cited by
The Art of Capturing Pluripotency: Creating the Right Culture, Stem Cell Reports, 2017, 8, 6, 1457  crossref(new windwow)
Evans MJ and Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156 crossref(new window)

Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78, 7634-7638 crossref(new window)

Ying Q, Nichols J, Chambers I and Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281-292 crossref(new window)

Ying QL, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453, 519-523 crossref(new window)

Buehr M, Meek S, Blair K et al (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287-1298 crossref(new window)

Li P, Tong C, Mehrian-Shai R et al (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135, 1299-1310 crossref(new window)

Tesar PJ, Chenoweth JG, Brook FA et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196-199 crossref(new window)

Brons IGM, Smithers LE, Trotter MWB et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-195 crossref(new window)

Thomson JA, Itskovitz-eldor J, Shapiro SS et al (1998) Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282, 1145-1147 crossref(new window)

He S, Nakada D and Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25, 377-406 crossref(new window)

Rastan S and Robertson EJ (1985) X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90, 379-388

Mak W, Nesterova TB, de Napoles M et al (2004) Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666-669 crossref(new window)

Okamoto I, Otte AP, Allis CD, Reinberg D and Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644-649 crossref(new window)

Takashima Y, Guo G, Loos R et al (2014) Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human. Cell 158, 1254-1269 crossref(new window)

Theunissen T, Powell B, Wang H et al (2014) Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency. Cell Stem Cell 15, 471-487 crossref(new window)

Gafni O, Weinberger L, Mansour AA et al (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282-286 crossref(new window)

Ware CB, Nelson AM, Mecham B et al (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A 111, 4484-4489 crossref(new window)

Chan YS, Göke J, Ng JH et al (2013) Induction of a Human Pluripotent State with Distinct Regulatory Circuitry that Resembles Preimplantation Epiblast. Cell Stem Cell 13, 663-675 crossref(new window)

Hanna J, Cheng AW, Saha K et al (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 107, 9222-9227 crossref(new window)

Huang K, Maruyama T and Fan G (2014) The Naive State of Human Pluripotent Stem Cells: A Synthesis of Stem Cell and Preimplantation Embryo Transcriptome Analyses. Cell Stem Cell 15, 410-415 crossref(new window)

Niwa H, Burdon T, Chambers I and Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12, 2048-2060 crossref(new window)

Kim H, Wu J, Ye S et al (2013) Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat Commun 4, 2403

Tanaka S, Kunath T, Hadjantonakis AK, Nagy A and Rossant J (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072-2075 crossref(new window)

Kunath T, Arnaud D, Uy GD et al (2005) Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649-1661 crossref(new window)

Shamblott MJ, Axelman J, Wang S et al (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95, 13726-13731 crossref(new window)

Turnpenny L, Brickwood S, Spalluto, Cosma M et al (2003) Derivation of Human Embryonic Germ Cells: An Alternative Source of Pluripotent Stem Cells. Stem Cells 21, 598-609 crossref(new window)

Matsui Y, Zsebo K and Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841-847 crossref(new window)

Resnick JL, Bixler LS, Cheng L and Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550-551 crossref(new window)

Tada T, Tada M, Hilton K et al (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207, 551-561 crossref(new window)

Durcova-Hills G, Ainscough J and McLaren a (2001) Pluripotential stem cells derived from migrating primordial germ cells. Differentiation 68, 220-226 crossref(new window)

Leitch HG, Blair K, Mansfield W et al (2010) Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development 137, 2279-2287 crossref(new window)

Meng X, Lindahl M, Hyvönen ME et al (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489-1493 crossref(new window)

Kanatsu-Shinohara M, Ogonuki N, Inoue K et al (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69, 612-616 crossref(new window)

Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262-265 crossref(new window)

Hitoshi S, Seaberg RM, Koscik C et al (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18, 1806-1811 crossref(new window)

Li W, Sun W, Zhang Y et al (2011) Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A 108, 8299-8304 crossref(new window)

Xi G, Hu P, Qu C, Qiu S, Tong C and Ying QL (2013) Induced neural stem cells generated from rat fibroblasts. Genomics Proteomics Bioinformatics 11, 312-319 crossref(new window)

Reynolds BA and Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175, 1-13 crossref(new window)

Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF and van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208, 166-188 crossref(new window)

Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G and Klein PS (2012) Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 18, 1778-1785 crossref(new window)

Montarras D, Morgan J, Collins C et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064-2067 crossref(new window)

Sacco A, Doyonnas R, Kraft P, Vitorovic S and Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502-506 crossref(new window)

Fu X, Xiao J, Wei Y et al (2015) Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res 25, 655-673 crossref(new window)

Huch M, Gehart H, van Boxtel R et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299-312 crossref(new window)

Pires-daSilva A and Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4, 39-49 crossref(new window)

Waddington C (1957) The strategy of the genes a discussion of some aspects of theoretical biology. Allen & Unwin, London

Wu J, Okamura D, Li M et al (2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521, 316-321 crossref(new window)

Guo G, Yang J, Nichols J et al (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063-1069 crossref(new window)

Yeom YI, Fuhrmann G, Ovitt CE et al (1996) Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881-894

Tai CI, Schulze EN and Ying QL (2014) Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner. Biol Open 3, 958-965 crossref(new window)

Huang G, Yan H, Ye S, Tong C and Ying QL (2014) STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 32, 1149-1160 crossref(new window)

Clevers H, Loh KM and Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 crossref(new window)

Burdon T, Stracey C, Chambers I, Nichols J and Smith A (1999) Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 210, 30-43 crossref(new window)

Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S and Smith A (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895-2902 crossref(new window)

Lanner F and Rossant J (2010) The role of FGF/Erk signaling in pluripotent cells. Development 137, 3351-3360 crossref(new window)