JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 48, Issue 8,  2015, pp.479-484
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2015.48.8.115
 Title & Authors
Antimicrobial peptide scolopendrasin VII, derived from the centipede Scolopendra subspinipes mutilans, stimulates macrophage chemotaxis via formyl peptide receptor 1
Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik;
  PDF(new window)
 Abstract
In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484]
 Keywords
Antimicrobial peptide;Chemotaxis;Formyl peptide receptor 1;Macrophage;Scolopendrasin VII;
 Language
English
 Cited by
1.
Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications, Toxins, 2015, 7, 12, 4832  crossref(new windwow)
 References
1.
Ye RD, Boulay F, Wang JM et al (2009) International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 61, 119-161 crossref(new window)

2.
Le Y, Murphy PM, and Wang JM (2002) Formyl-peptide receptors revisited. Trends Immunol 23, 541-548 crossref(new window)

3.
Kim SD, Kim YK, Lee HY et al (2010) The agonists of formyl peptide receptors prevent development of severe sepsis after microbial infection. J Immunol 185, 4302-4310 crossref(new window)

4.
Kang HK, Lee HY, Kim MK et al (2005) The synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met inhibits human monocytederived dendritic cell maturation via formyl peptide receptor and formyl peptide receptor-like 2. J Immunol 175, 685-692 crossref(new window)

5.
Kim SD, Kim JM, Jo SH et al (2009) Functional expression of formyl peptide receptor family in human NK cells. J Immunol 183, 5511-5517 crossref(new window)

6.
Hachicha M, Pouliot M, Petasis NA, and Serhan CN (1999) Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1alpha-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J Exp Med 189, 1923-1930 crossref(new window)

7.
De Yang, Chen Q, Schmidt AP et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192, 1069-1074 crossref(new window)

8.
Yoo WG, Lee JH, Shin Y et al (2014) Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans. Funct Integr Genomics 14, 275-283 crossref(new window)

9.
Lee JH, Kim IW, Kim SH et al Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J Microbiol Biotechnol [Epub ahead of print]

10.
Howard TH, and Meyer WH (1984) Chemotactic peptide modulation of actin assembly and locomotion in neutrophils. J Cell Biol 98, 1265-1271 crossref(new window)

11.
Phillips R, and Ager A (2002) Activation of pertussis toxin-sensitive CXCL12 (SDF-1) receptors mediates transendothelial migration of T lymphocytes across lymph node high endothelial cells. Eur J Immunol 32, 837-847 crossref(new window)

12.
Nardelli B, Tiffany HL, Bong GW et al (1999) Characterization of the signal transduction pathway activated in human monocytes and dendritic cells by MPIF-1, a specific ligand for CC chemokine receptor 1. J Immunol 162, 435-444

13.
Green SR, Han KH, Chen Y et al (2006) The CC chemokine MCP-1 stimulates surface expression of CX3CR1 and enhances the adhesion of monocytes to fractalkine/CX3CL1 via p38 MAPK. J Immunol 176, 7412-7420 crossref(new window)

14.
Toker A, and Marmiroli S (2014) Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul 55, 28-38 crossref(new window)

15.
Dai Y, Major J, Novotny M, and Hamilton TA (2005) IL-4 inhibits expression of the formyl peptide receptor gene in mouse peritoneal macrophages. J Interferon Cytokine Res 25, 11-19 crossref(new window)

16.
Wenzel-Seifert K, Grünbaum L, and Seifert R (1991) Differential inhibition of human neutrophil activation by cyclosporins A, D, and H. Cyclosporin H is a potent and effective inhibitor of formyl peptide-induced superoxide formation. J Immunol 147, 1940-1946

17.
Koczulla R, von Degenfeld G, Kupatt C et al (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111, 1665-1672 crossref(new window)

18.
Bréchard S, and Tschirhart EJ (2008) Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol 84, 1223-1237 crossref(new window)

19.
Bae YS, Song JY, Kim Y et al (2003) Differential activation of formyl peptide receptor signaling by peptide ligands. Mol Pharmacol 64, 841-847 crossref(new window)

20.
Wiesner J, and Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1, 440-464 crossref(new window)

21.
Scott MG, Davidson DJ, Gold MR, Bowdish D, and Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169, 3883-3891 crossref(new window)

22.
Bae YS, Bae H, Kim Y, Lee TG, Suh PG, and Ryu SH (2001) Identification of novel chemoattractant peptides for human leukocytes. Blood 97, 2854-2862 crossref(new window)

23.
Lee N, Jung YS, Lee HY et al (2014) Mouse neutrophils express functional umami taste receptor T1R1/T1R3. BMB Rep 47, 649-654 crossref(new window)

24.
Katanaev VL, and Wymann MP (1998) Microquantification of cellular and in vitro F-actin by rhodamine phalloidin fluorescence enhancement. Anal Biochem 264, 185-190 crossref(new window)

25.
Lee HY, Kim SD, Shim JW et al (2008) Serum amyloid A induces CCL2 production via formyl peptide receptor-like 1-mediated signaling in human monocytes. J Immunol 181, 4332-4339 crossref(new window)

26.
Kook M, Lee SK, Kim SD et al (2015) Anti-septic activity of α-cubebenoate isolated from Schisandra chinensis. BMB Rep 48, 336-341 crossref(new window)

27.
Kim SD, Lee HY, Shim JW et al (2011) Activation of CXCR2 by extracellular matrix degradation product acetylated Pro-Gly-Pro has therapeutic effects against sepsis. Am J Respir Crit Care Med 184, 243-251 crossref(new window)