JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 49, Issue 1,  2016, pp.51-56
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2016.49.1.102
 Title & Authors
Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation
Noh, Kyung Tae; Cha, Gil Sun; Kang, Tae Heung; Cho, Joon; Jung, In Duk; Kim, Kwang-Youn; Ahn, Soon-Cheol; You, Ji Chang; Park, Yeong-Min;
  PDF(new window)
 Abstract
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxel-treated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy. [BMB Reports 2016; 49(1): 51-56]
 Keywords
B-cell lymphoma 2;Breast cancer;Cell death;Glycogen synthase kinase-3β;Paclitaxel;
 Language
English
 Cited by
 References
1.
Embi N, Rylatt DB and Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107, 519-527 crossref(new window)

2.
Jope RS and Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29, 95-102 crossref(new window)

3.
Doble BW and Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116(Pt 7), 1175-1186 crossref(new window)

4.
Shin J, Yu SB, Yu UY, Jo SA, Ahn JH (2010) Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer's disease. BMB Rep 43, 704-709 crossref(new window)

5.
Xiong Q, Deng CY, Chai J (2009) Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts. BMB Rep 42, 119-124 crossref(new window)

6.
Beurel E and Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79, 173-189 crossref(new window)

7.
Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86-90 crossref(new window)

8.
Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W (2008) t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism. Cancer Res 68, 395-403 crossref(new window)

9.
Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET, Yu Q (2005) Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res 65, 9012-9020 crossref(new window)

10.
Linseman DA, Butts BD, Precht TA et al (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24, 9993-10002 crossref(new window)

11.
Willis S, Day CL, Hinds MG, Huang DC (2003) The Bcl-2-regulated apoptotic pathway. J Cell Sci 116(Pt 20), 4053-4056 crossref(new window)

12.
Kang MH and Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15, 1126-1132 crossref(new window)

13.
Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66, 1-15 crossref(new window)

14.
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192 crossref(new window)

15.
Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10, 2859-2869 crossref(new window)

16.
Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48, 353-374 crossref(new window)

17.
Slichenmyer WJ and Von Hoff DD (1991) Taxol: a new and effective anti-cancer drug. Anticancer Drugs 2, 519-530 crossref(new window)

18.
Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13, 134-136 crossref(new window)

19.
Schiff PB and Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77, 1561-1565 crossref(new window)

20.
Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Wallace BA, Makowski L (1999) Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 285, 197-203 crossref(new window)

21.
Noh KT, Park YM, Cho SG, Choi EJ (2011) GSK-3beta-induced ASK1 stabilization is crucial in LPS-induced endotoxin shock. Exp Cell Res 317, 1663-1668 crossref(new window)

22.
Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21 crossref(new window)

23.
Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell- free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157 crossref(new window)

24.
Henry-Mowatt J, Dive C, Martinou JC, James D (2004) Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene 23, 2850-2860 crossref(new window)

25.
Liu H, Mi S, Li Z, Hua F, Hu ZW (2013) Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy 9, 730-742 crossref(new window)

26.
Noh KT, Son KH, Jung ID (2012) Protein kinase C delta (PKCdelta)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade regulates glycogen synthase kinase-3 (GSK-3) inhibition- mediated interleukin-10 (IL-10) expression in lipopolysaccharide (LPS)-induced endotoxemia. J Biol Chem 287, 14226-14233 crossref(new window)

27.
Kim JW, Lee JE, Kim MJ, Cho EG, Cho SG, Choi EJ (2003) Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1). J Biol Chem 278, 13995-14001 crossref(new window)

28.
Wang Q, Zhou Y, Wang X, Evers BM (2006) Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene 25, 43-50

29.
Yvon AM, Wadsworth P and Jordan MA (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 10, 947-959 crossref(new window)

30.
Tange S, Scherer MN, Graeb C (2002) The antineoplastic drug Paclitaxel has immunosuppressive properties that can effectively promote allograft survival in a rat heart transplant model. Transplantation 73, 216-223 crossref(new window)

31.
Amos LA and Lowe J (1999) How Taxol stabilises microtubule structure. Chem Biol 6, R65-69 crossref(new window)

32.
Saunders DE, Lawrence WD, Christensen C, Wappler NL, Ruan H, Deppe G (1997) Paclitaxel-induced apoptosis in MCF-7 breast-cancer cells. Int J Cancer 70, 214-220 crossref(new window)

33.
Liu K, Cang S, Ma Y, Chiao JW (2013) Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int 13, 10 crossref(new window)

34.
Lee SJ, Noh KT2, Kang TH (2014) The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4. BMB Rep 47, 115-120 crossref(new window)