Advanced SearchSearch Tips
Structure biology of selective autophagy receptors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 49, Issue 2,  2016, pp.73-80
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2016.49.2.265
 Title & Authors
Structure biology of selective autophagy receptors
Kim, Byeong-Won; Kwon, Do Hoon; Song, Hyun Kyu;
  PDF(new window)
Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy.
Autophagy;LIR motif;Receptor;Selective autophagy;Ubiquitin binding domain;
 Cited by
A novel conformation of the LC3-interacting region motif revealed by the structure of a complex between LC3B and RavZ, Biochemical and Biophysical Research Communications, 2017, 490, 3, 1093  crossref(new windwow)
ACCORD: an assessment tool to determine the orientation of homodimeric coiled-coils, Scientific Reports, 2017, 7, 43318  crossref(new windwow)
Insights into links between autophagy and the ubiquitin system from the structure of LC3B bound to the LIR motif from the E3 ligase NEDD4, Protein Science, 2017, 26, 8, 1674  crossref(new windwow)
Genetic control of autophagy underlies pathogenesis of inflammatory bowel disease, Mucosal Immunology, 2017, 10, 3, 589  crossref(new windwow)
Reduced Autophagy in 5-Fluorouracil Resistant Colon Cancer Cells, Biomolecules & Therapeutics, 2017, 25, 3, 315  crossref(new windwow)
The 1:2 complex between RavZ and LC3 reveals a mechanism for deconjugation of LC3 on the phagophore membrane, Autophagy, 2017, 13, 1, 70  crossref(new windwow)
Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4, 740-743 crossref(new window)

Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24, 9-23 crossref(new window)

Mizushima N, Noda T, Yoshimori T et al (1998) A protein conjugation system essential for autophagy. Nature 395, 395-398 crossref(new window)

Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458-467 crossref(new window)

Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216 crossref(new window)

Hong SB, Kim BW, Lee KE et al (2011) Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol 18, 1323-1330 crossref(new window)

Suzuki H, Kaizuka T, Mizushima N and Noda NN (2015) Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 22, 572-580 crossref(new window)

Fujioka Y, Suzuki SW, Yamamoto H et al (2014) Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol 21, 513-521 crossref(new window)

Hong SB, Kim BW, Kim JH and Song HK (2012) Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr 68, 1409-1417 crossref(new window)

Hurley JH and Schulman BA (2014) Atomistic autophagy: the structures of cellular self-digestion. Cell 157, 300-311 crossref(new window)

Klionsky DJ and Schulman BA (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21, 336-345 crossref(new window)

Kaiser SE, Mao K, Taherbhoy AM et al (2012) Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol 19, 1242-1249 crossref(new window)

Kaiser SE, Qiu Y, Coats JE, Mao K, Klionsky DJ and Schulman BA (2013) Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy 9, 778-780 crossref(new window)

Kim JH, Hong SB, Lee JK et al (2015) Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11, 75-87 crossref(new window)

Popelka H and Klionsky DJ (2015) Post-translationally-modified structures in the autophagy machinery: an integrative perspective. FEBS J 282, 3474-3488 crossref(new window)

Kim JH and Song HK (2015) Swapping of interaction partners with ATG5 for autophagosome maturation. BMB Rep 48, 129-130 crossref(new window)

Levine B, Mizushima N and Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469, 323-335 crossref(new window)

Yang Z and Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12, 814-822 crossref(new window)

Kirkin V, McEwan DG, Novak I and Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34, 259-269 crossref(new window)

Kraft C, Peter M and Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12, 836-841 crossref(new window)

Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145 crossref(new window)

Kirkin V, Lamark T, Sou YS et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33, 505-516 crossref(new window)

Korac J, Schaeffer V, Kovacevic I et al (2013) Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci 126, 580-592 crossref(new window)

Lu K, Psakhye I and Jentsch S (2014) Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549-563 crossref(new window)

Sarraf SA, Raman M, Guarani-Pereira V et al (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376 crossref(new window)

Wong YC and Holzbaur EL (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111, E4439-4448 crossref(new window)

Lazarou M, Sliter DA, Kane LA et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 crossref(new window)

Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11, 45-51 crossref(new window)

Quinsay MN, Thomas RL, Lee Y and Gustafsson AB (2010) Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6, 855-862 crossref(new window)

Kanki T, Wang K, Cao Y, Baba M and Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17, 98-109 crossref(new window)

Okamoto K, Kondo-Okamoto N and Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17, 87-97 crossref(new window)

Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S and Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287, 19094-19104 crossref(new window)

Deosaran E, Larsen KB, Hua R et al (2013) NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 126, 939-952 crossref(new window)

Motley AM, Nuttall JM and Hettema EH (2012) Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 31, 2852-2868 crossref(new window)

Jiang S, Wells CD and Roach PJ (2011) Starch-binding do main-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun 413, 420-425 crossref(new window)

Kraft C, Deplazes A, Sohrmann M and Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10, 602-610 crossref(new window)

Khaminets A, Heinrich T, Mari M et al (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354-358 crossref(new window)

Kurth I, Pamminger T, Hennings JC et al (2009) Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet 41, 1179-1181 crossref(new window)

Mochida K, Oikawa Y, Kimura Y et al (2015) Receptormediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359-362 crossref(new window)

Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458, 1131-1135 crossref(new window)

Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T and Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183, 5909-5916 crossref(new window)

Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N and Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10, 1215-1221 crossref(new window)

Wild P, Farhan H, McEwan DG et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233 crossref(new window)

Thurston TL, Wandel MP, von Muhlinen N, Foeglein A and Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418 crossref(new window)

Behrends C, Sowa ME, Gygi SP and Harper JW (2010) Network organization of the human autophagy system. Nature 466, 68-76 crossref(new window)

Wild P, McEwan DG and Dikic I (2014) The LC3 interactome at a glance. J Cell Sci 127, 3-9 crossref(new window)

Xu Z, Yang L, Xu S, Zhang Z and Cao Y (2015) The receptor proteins: pivotal roles in selective autophagy. Acta Biochim Biophys Sin (Shanghai) 47, 571-580 crossref(new window)

Slobodkin MR and Elazar Z (2013) The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 55, 51-64 crossref(new window)

Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614 crossref(new window)

Moscat J, Diaz-Meco MT and Wooten MW (2007) Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32, 95-100 crossref(new window)

Kuusisto E, Salminen A and Alafuzoff I (2001) Ubiquitinbinding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12, 2085-2090 crossref(new window)

Zatloukal K, Stumptner C, Fuchsbichler A et al (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160, 255-263 crossref(new window)

Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12, 213-223

Noda NN, Kumeta H, Nakatogawa H et al (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211-1218 crossref(new window)

Campbell IG, Nicolai HM, Foulkes WD et al (1994) A novel gene encoding a B-box protein within the BRCA1 region at 17q21.1. Hum Mol Genet 3, 589-594 crossref(new window)

Lamark T, Kirkin V, Dikic I and Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986-1990 crossref(new window)

Korioth F, Gieffers C, Maul GG and Frey J (1995) Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment. J Cell Biol 130, 1-13 crossref(new window)

von Muhlinen N, Akutsu M, Ravenhill BJ et al (2012) LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell 48, 329-342 crossref(new window)

Xie X, Li F, Wang Y et al (2015) Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2. Autophagy 11, 1775-1789 crossref(new window)

Kim BW, Hong SB, Kim JH, Kwon do H and Song HK (2013) Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat Commun 4, 1613 crossref(new window)

Watson RO, Manzanillo PS and Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803-815 crossref(new window)

Mostowy S, Sancho-Shimizu V, Hamon MA et al (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286, 26987-26995 crossref(new window)

Majcher V, Goode A, James V and Layfield R (2015) Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci 66, 43-52 crossref(new window)

Weidberg H and Elazar Z (2011) TBK1 mediates crosstalk between the innate immune response and autophagy. Sci Signal 4, pe39 crossref(new window)

Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J and Buss F (2012) Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14, 1024-1035 crossref(new window)

Heo JM, Ordureau A, Paulo JA, Rinehart J and Harper JW (2015) The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol Cell 60, 7-20 crossref(new window)

Zhang J and Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16, 939-946 crossref(new window)

Kanki T (2010) Nix, a receptor protein for mitophagy in mammals. Autophagy 6, 433-435 crossref(new window)

Noda NN, Ohsumi Y and Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584, 1379-1385 crossref(new window)

Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V and Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29, 1792-1802 crossref(new window)

Ichimura Y, Kumanomidou T, Sou YS et al (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283, 22847-22857 crossref(new window)

Rozenknop A, Rogov VV, Rogova NY et al (2011) Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J Mol Biol 410, 477-487 crossref(new window)

Rogov VV, Suzuki H, Fiskin E et al (2013) Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochem J 454, 459-466 crossref(new window)

Shaid S, Brandts CH, Serve H and Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20, 21-30 crossref(new window)

Manzanillo PS, Ayres JS, Watson RO et al (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512-516 crossref(new window)

Ciani B, Layfield R, Cavey JR, Sheppard PW and Searle MS (2003) Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone. J Biol Chem 278, 37409-37412 crossref(new window)

Isogai S, Morimoto D, Arita K et al (2011) Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin. J Biol Chem 286, 31864-31874 crossref(new window)

Long J, Gallagher TR, Cavey JR et al (2008) Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J Biol Chem 283, 5427-5440 crossref(new window)

Walinda E, Morimoto D, Sugase K, Konuma T, Tochio H and Shirakawa M (2014) Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin. J Biol Chem 289, 13890-13902 crossref(new window)

Michielssens S, Peters JH, Ban D et al (2014) A designed conformational shift to control protein binding specificity. Angew Chem Int Ed Engl 53, 10367-10371 crossref(new window)

Moscat J, Diaz-Meco MT, Albert A and Campuzano S (2006) Cell signaling and function organized by PB1 domain interactions. Mol Cell 23, 631-640 crossref(new window)

Saio T, Yokochi M, Kumeta H and Inagaki F (2010) PCS-based structure determination of protein-protein complexes. J Biomol NMR 46, 271-280 crossref(new window)

Ciuffa R, Lamark T, Tarafder AK et al (2015) The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep 11, 748-758 crossref(new window)

Saio T, Yokochi M and Inagaki F (2009) The NMR structure of the p62 PB1 domain, a key protein in autophagy and NF-kappaB signaling pathway. J Biomol NMR 45, 335-341 crossref(new window)

Muller S, Kursula I, Zou P and Wilmanns M (2006) Crystal structure of the PB1 domain of NBR1. FEBS Lett 580, 341-344 crossref(new window)

Cha-Molstad H, Sung KS, Hwang J et al (2015) Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat Cell Biol 17, 917-929 crossref(new window)

Cha-Molstad H, Kwon YT and Kim BY (2015) Amino-terminal arginylation as a degradation signal for selective autophagy. BMB Rep 48, 487-488 crossref(new window)

Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678 crossref(new window)

Jain A, Lamark T, Sjottem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591 crossref(new window)

Ichimura Y, Waguri S, Sou YS et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51, 618-631 crossref(new window)

Janssen BJ, Huizinga EG, Raaijmakers HC et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505-511 crossref(new window)

Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I and Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5, 3496

Li S, Wandel MP, Li F et al (2013) Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy. Sci Signal 6, ra9 crossref(new window)

Nogales E and Scheres SH (2015) Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Mol Cell 58, 677-689 crossref(new window)

Rambo RP and Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42, 415-441 crossref(new window)

Ren J, Wang J, Wang Z and Wu J (2014) Structural and biochemical insights into the homotypic PB1-PB1 complex between PKCzeta and p62. Sci China Life Sci 57, 69-80 crossref(new window)

Evans CL, Long JE, Gallagher TR, Hirst JD and Searle MS (2008) Conformation and dynamics of the three-helix bundle UBA domain of p62 from experiment and simulation. Proteins 71, 227-240 crossref(new window)

Long J, Garner TP, Pandya MJ et al (2010) Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling. J Mol Biol 396, 178-194 crossref(new window)

Mueller-Dieckmann C, Panjikar S, Schmidt A et al (2007) On the routine use of soft X-rays in macromolecular crystallography. Part IV. Efficient determination of anomalous substructures in biomacromolecules using longer X-ray wavelengths. Acta Crystallogr D Biol Crystallogr 63, 366-380 crossref(new window)