Advanced SearchSearch Tips
The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 49, Issue 3,  2016, pp.139-148
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2016.49.3.268
 Title & Authors
The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities
Erion, Derek M.; Park, Hyun-Jun; Lee, Hui-Young;
  PDF(new window)
In the past decade, the incidence of type 2 diabetes (T2D) has rapidly increased, along with the associated cardiovascular complications. Therefore, understanding the pathophysiology underlying T2D, the associated complications and the impact of therapeutics on the T2D development has critical importance for current and future therapeutics. The prevailing feature of T2D is hyperglycemia due to excessive hepatic glucose production, insulin resistance, and insufficient secretion of insulin by the pancreas. These contribute to increased fatty acid influx into the liver and muscle causing accumulation of lipid metabolites. These lipid metabolites cause dyslipidemia and non-alcoholic fatty liver disease, which ultimately contributes to the increased cardiovascular risk in T2D. Therefore, understanding the mechanisms of hepatic insulin resistance and the specific role of liver lipids is critical in selecting and designing the most effective therapeutics for T2D and the associated co-morbidities, including dyslipidemia and cardiovascular disease. Herein, we review the effects and molecular mechanisms of conventional anti-hyperglycemic and lipid-lowering drugs on glucose and lipid metabolism.
Cardiovascular disease;Diabetic dyslipidemia;Lipid metabolites;Insulin resistance;Type 2 diabetes;
 Cited by
Kaffee senkt Rückfallrate bei Patienten mit Kolonkarzinom im Stadium III, Info Onkologie, 2016, 19, 4, 24  crossref(new windwow)
Zimmet P, Alberti KG and Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414, 782-787 crossref(new window)

Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U and Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103, 137-149 crossref(new window)

Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 125, e2-e220 crossref(new window)

UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837-853 crossref(new window)

Bonora E, Formentini G, Calcaterra F et al (2002) HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care 25, 1135-1141 crossref(new window)

Wajchenberg BL (2007) beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 28, 187-218 crossref(new window)

Rothman DL, Shulman RG and Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 89, 1069-1075 crossref(new window)

Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA and Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322, 223-228 crossref(new window)

Hwang JH, Perseghin G, Rothman DL et al (1995) Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest 95, 783-787 crossref(new window)

Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K and Kalhan SC (1996) Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 98, 378-385 crossref(new window)

DeFronzo RA and Tripathy D (2009) Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32, S157-S163 crossref(new window)

DeFronzo RA, Ferrannini E and Simonson DC (1989) Simonson, Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 38, 387-395 crossref(new window)

Perry RJ, Camporez JP, Kursawe R et al (2015) Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell, 160, 745-758 crossref(new window)

Wu L and Parhofer KG (2014) Diabetic dyslipidemia. Metabolism 63, 1469-1479 crossref(new window)

Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595-1607 crossref(new window)

Samuel VT and Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852-871 crossref(new window)

Chaurasia B and Summers SA (2015) Ceramides - Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol Metab 26, 538-550 crossref(new window)

Samuel VT, Liu ZX, Qu X et al (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279, 32345-32353 crossref(new window)

Magkos F, Su X, Bradley D et al (2012) Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444-1446 e2 crossref(new window)

Jurczak MJ, Lee AH, Jornayvaz FR et al (2012) Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J Biol Chem 287, 2558-2567 crossref(new window)

Lee SY, Hong IK, Kim BR et al (2015) Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology 62, 135-146 crossref(new window)

Haus JM, Kashyap SR, Kasumov T et al (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58, 337-343 crossref(new window)

Adams JM 2nd, Pratipanawatr T, Berria R et al (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53, 25-31 crossref(new window)

Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5, 150-159 crossref(new window)

Semple RK, Sleigh A, Murgatroyd PR et al (2009) Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest 119, 315-322

Rader DJ (2007) Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med 120, S12-S18 crossref(new window)

Adiels M, Olofsson SO, Taskinen MR and Borén J (2008) Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 28, 1225-1236 crossref(new window)

Bang KB and Cho YK (2015) Comorbidities and Metabolic Derangement of NAFLD. J Lifestyle Med 5, 7-13 crossref(new window)

Koo SH (2013) Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 19, 210-215 crossref(new window)

Athyros VG, Tziomalos K, Katsiki N, Doumas M, Karagiannis A and Mikhailidis DP (2015) Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: An update. World J Gastroenterol 21, 6820-6834

Williams CD, Stengel J, Asike MI et al (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140, 124-131 crossref(new window)

American Diabetes Association (2009) Standards of medical care in diabetes--2009. Diabetes Care 32, S13-S61 crossref(new window)

Klip A and Leiter LA (1990) Cellular mechanism of action of metformin. Diabetes Care 13, 696-704 crossref(new window)

Stumvoll M, Nurjhan N, Perriello G, Dailey G and Gerich JE (1995) Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 333, 550-554 crossref(new window)

Kim YD, Park KG, Lee YS et al (2008) Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57, 306-314 crossref(new window)

Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167-1174 crossref(new window)

Wulffelé MG, Kooy A, de Zeeuw D, Stehouwer CD and Gansevoort RT (2004) The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med 256, 1-14 crossref(new window)

Shields WW, Thompson KE, Grice GA, Harrison SA and Coyle WJ (2009) The Effect of Metformin and Standard Therapy versus Standard Therapy alone in Nondiabetic Patients with Insulin Resistance and Nonalcoholic Steatohepatitis (NASH): A Pilot Trial. Therap Adv Gastroenterol 2, 157-163 crossref(new window)

Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542-546 crossref(new window)

Fujita T, Sugiyama Y, Taketomi S et al (1983) Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcycloheylmethoxy)benzyl]-thiazolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes 32, 804-810 crossref(new window)

Soccio RE, Chen ER and Lazar MA (2014) Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20, 573-591 crossref(new window)

Chao L, Marcus-Samuels B, Mason MM et al (2000) Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest 106, 1221-1228 crossref(new window)

Ohno H, Shinoda K, Spiegelman BM and Kajimura S (2012) PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15, 395-404 crossref(new window)

Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355, 2427-2443 crossref(new window)

Belfort R, Harrison SA, Brown K et al (2006) A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355, 2297-2307 crossref(new window)

Sanyal AJ, Chalasani N, Kowdley KV et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362, 1675-1685 crossref(new window)

Ratziu V, Giral P, Jacqueminet S et al (2008) Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 135, 100-110 crossref(new window)

Cariou B, Charbonnel B and Staels B (2012) Thiazolidinediones and PPARgamma agonists: time for a reassessment. Trends Endocrinol Metab 23, 205-215 crossref(new window)

Gray LR, Sultana MR, Rauckhorst AJ et al (2015) Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis. Cell Metab 22, 669-681 crossref(new window)

Colca JR, VanderLugt JT, Adams WJ et al (2013) Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin Pharmacol Ther 93, 352-359 crossref(new window)

Kramer W, Müller G and Geisen K (1996) Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at beta-cells. Horm Metab Res 28, 464-468 crossref(new window)

DeFronzo RA and Simonson DC (1984) Oral sulfonylurea agents suppress hepatic glucose production in non-insulin-dependent diabetic individuals. Diabetes Care 7, 72-80 crossref(new window)

Taskinen MR, Beltz WF, Harper I et al (1986) Effects of NIDDM on very-low-density lipoprotein triglyceride and apolipoprotein B metabolism. Studies before and after sulfonylurea therapy. Diabetes 35, 1268-1277 crossref(new window)

Howard BV, Xiaoren P, Harper I, Foley JE, Cheung MC and Taskinen MR (1985) Effect of sulfonylurea therapy on plasma lipids and high-density lipoprotein composition in non-insulin-dependent diabetes mellitus. Am J Med 79, 78-85 crossref(new window)

Monami M, Vitale V, Ambrosio ML et al (2012) Effects on lipid profile of dipeptidyl peptidase 4 inhibitors, pioglitazone, acarbose, and sulfonylureas: meta-analysis of placebo-controlled trials. Adv Ther 29, 736-746 crossref(new window)

Gerstein HC, Bosch J, Dagenais GR et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367, 319-328 crossref(new window)

Ben-Shlomo S, Zvibel I, Shnell M et al (2011) Glucagonlike peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol 54, 1214-1223 crossref(new window)

Ding X, Saxena NK, Lin S, Gupta NA and Anania FA (2006) Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 43, 173-181 crossref(new window)

Mells JE, Fu PP, Sharma S et al (2012) Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol 302, G225-235 crossref(new window)

Armstrong MJ, Gaunt P, Aithal GP et al (2015) Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet [Epub ahead of print]

Wang XC, Gusdon AM, Liu H and Qu S (2014) Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation. World J Gastroenterol 20, 14821-14830 crossref(new window)

Aroor AR, Habibi J, Ford DA et al (2015) Dipeptidyl peptidase-4 inhibition ameliorates Western diet-induced hepatic steatosis and insulin resistance through hepatic lipid remodeling and modulation of hepatic mitochondrial function. Diabetes 64, 1988-2001 crossref(new window)

Kato H, Nagai Y, Ohta A et al (2015) Effect of sitagliptin on intrahepatic lipid content and body fat in patients with type 2 diabetes. Diabetes Res Clin Pract 109, 199-205 crossref(new window)

Macauley M, Hollingsworth KG, Smith FE et al (2015) Effect of vildagliptin on hepatic steatosis. J Clin Endocrinol Metab 100, 1578-1585 crossref(new window)

Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369, 1317-1326 crossref(new window)

Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124, 499-508 crossref(new window)

Bolinder J, Ljunggren Ö, Johansson L et al (2014) Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 16, 159-169 crossref(new window)

Yokono M, Takasu T, Hayashizaki Y et al (2014) SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol 727, 66-74 crossref(new window)

Neumiller JJ (2014) Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. Drugs Context 3, 212-262

Bode B, Stenlöf K, Harris S et al (2015) Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab 17, 294-303 crossref(new window)

Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 373, 2117-2128 crossref(new window)

Pfefferkorn JA (2013) Strategies for the design of hepatoselective glucokinase activators to treat type 2 diabetes. Expert Opin Drug Discov 8, 319-330 crossref(new window)

Sammons MF and Lee EC (2015) Recent progress in the development of small-molecule glucagon receptor antagonists. Bioorg Med Chem Lett 25, 4057-4064 crossref(new window)

Erion DM, Lapworth A, Amor PA et al (2014) The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats. PLoS One 9, e97139 crossref(new window)

Guan HP, Yang X, Lu K et al (2015) Glucagon receptor antagonism induces increased cholesterol absorption. J Lipid Res 56, 2183-2195 crossref(new window)

Sazonov V, Maccubbin D, Sisk CM and Canner PL (2013) Effects of niacin on the incidence of new onset diabetes and cardiovascular events in patients with normoglycaemia and impaired fasting glucose. Int J Clin Pract 67, 297-302 crossref(new window)

McKenney J (2004) New perspectives on the use of niacin in the treatment of lipid disorders. Arch Intern Med 164, 697-705 crossref(new window)

Capuzzi DM, Morgan JM, Brusco OA Jr and Intenzo CM (2000) Niacin dosing: relationship to benefits and adverse effects. Curr Atheroscler Rep 2, 64-71 crossref(new window)

Drood JM, Zimetbaum PJ and Frishman WH (1991) Nicotinic-Acid for the Treatment of Hyperlipoproteinemia. J Clin Pharmacol 31, 641-650 crossref(new window)

Elam MB, Hunninghake DB, Davis KB et al (2000) Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: A randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 284, 1263-1270 crossref(new window)

Downs JR, Clearfield M, Weis S et al (1998) Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 279, 1615-1622 crossref(new window)

Shepherd J, Cobbe SM, Ford I et al (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 333, 1301-1307 crossref(new window)

McFarlane SI, Muniyappa R, Francisco R and Sowers JR (2002) Clinical review 145: Pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab 87, 1451-1458 crossref(new window)

Sugiyama S, Fukushima H, Kugiyama K et al (2007) Pravastatin improved glucose metabolism associated with increasing plasma adiponectin in patients with impaired glucose tolerance and coronary artery disease. Atherosclerosis 194, e43-51 crossref(new window)

Preiss D, Seshasai SR, Welsh P et al (2011) Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA 305, 2556-2564 crossref(new window)

Sattar N, Preiss D, Murray HM et al (2010) Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735-742 crossref(new window)

Mullard A (2012) Cholesterol-lowering blockbuster candidates speed into Phase III trials. Nat Rev Drug Discov 11, 817-819 crossref(new window)

Roth EM, Taskinen MR, Ginsberg HN et al (2014) Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol 176, 55-61 crossref(new window)

Okamoto H, Yonemori F, Wakitani K, Minowa T, Maeda K and Shinkai H (2000) A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406, 203-207 crossref(new window)

de Grooth GJ, Kuivenhoven JA, Stalenhoef AF et al (2002) Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans - A randomized phase II dose-response study. Circulation 105, 2159-2165 crossref(new window)

Nicholls SJ, Brewer HB, Kastelein JJ et al (2011) Effects of the CETP Inhibitor Evacetrapib Administered as Monotherapy or in Combination With Statins on HDL and LDL Cholesterol A Randomized Controlled Trial. JAMA 306, 2099-2109 crossref(new window)

Barter PJ, Rye KA, Tardif JC et al (2011) Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation 124, 555-562 crossref(new window)

Kharitonenkov A and Shanafelt AB (2009) FGF21: a novel prospect for the treatment of metabolic diseases. Curr Opin Investig Drugs 10, 359-364

Lin Z, Tian H, Lam KS et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17, 779-789 crossref(new window)

Bernardo B, Lu M, Bandyopadhyay G et al (2015) FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Sci Rep 5, 11382 crossref(new window)

Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18, 333-340 crossref(new window)

Petersen KF, Dufour S, Hariri A et al (2010) Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med 362, 1082-1089 crossref(new window)

Petersen KF, Dufour S, Feng J et al (2006) Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci U S A 103, 18273-18277 crossref(new window)

Lee HY, Birkenfeld AL, Jornayvaz FR et al (2011) Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology 54, 1650-1660 crossref(new window)