JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Loss of phospholipase D2 impairs VEGF-induced angiogenesis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 49, Issue 3,  2016, pp.191-196
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2016.49.3.219
 Title & Authors
Loss of phospholipase D2 impairs VEGF-induced angiogenesis
Lee, Chang Sup; Ghim, Jaewang; Song, Parkyong; Suh, Pann-Ghill; Ryu, Sung Ho;
  PDF(new window)
 Abstract
Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis and critical for normal embryonic development and repair of pathophysiological conditions in adults. Although phospholipase D (PLD) activity has been implicated in angiogenic processes, its role in VEGF signaling during angiogenesis in mammals is unclear. Here, we found that silencing of PLD2 by siRNA blocked VEGF-mediated signaling in immortalized human umbilical vein endothelial cells (iHUVECs). Also, VEGF-induced endothelial cell survival, proliferation, migration, and tube formation were inhibited by PLD2 silencing. Furthermore, while Pld2-knockout mice exhibited normal development, loss of PLD2 inhibited VEGF-mediated ex vivo angiogenesis. These findings suggest that PLD2 functions as a key mediator in the VEGF-mediated angiogenic functions of endothelial cells.
 Keywords
Angiogenesis;Aorta ring;Endothelial cells;Phospholipase D;Tube formation;VEGF;
 Language
English
 Cited by
1.
Assessment of the anti-metastatic properties of sanguiin H-6 in HUVECs and MDA-MB-231 human breast cancer cells, Bioorganic & Medicinal Chemistry Letters, 2016, 26, 14, 3291  crossref(new windwow)
 References
1.
Ferrara N, Gerber HP and LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9, 669-676 crossref(new window)

2.
Olsson AK, Dimberg A, Kreuger J and Claesson-Welsh L (2006) VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7, 359-371 crossref(new window)

3.
Carmeliet P and Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307 crossref(new window)

4.
Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438, 932-936 crossref(new window)

5.
Ribatti D, Nico B and Crivellato E (2009) Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 12, 101-111 crossref(new window)

6.
Behl T and Kotwani A (2015) Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol Res 99, 137-148 crossref(new window)

7.
Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT and De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56, 549-580 crossref(new window)

8.
Frohman MA (2015) The phospholipase D superfamily as therapeutic targets. Trends Pharmacol Sci 36, 137-144 crossref(new window)

9.
Gomez-Cambronero J (2014) Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem 289, 22557-22566 crossref(new window)

10.
Jang JH, Lee CS, Hwang D and Ryu SH (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 51, 71-81 crossref(new window)

11.
Nelson RK and Frohman MA (2015) Physiological and Pathophysiological roles for Phospholipase D. J Lipid Res 56, 2229-2237 crossref(new window)

12.
Zhang Q, Wang D, Kundumani-Sridharan V et al (2010) PLD1-dependent PKCgamma activation downstream to Src is essential for the development of pathologic retinal neovascularization. Blood 116, 1377-1385 crossref(new window)

13.
Zeng XX, Zheng X, Xiang Y et al (2009) Phospholipase D1 is required for angiogenesis of intersegmental blood vessels in zebrafish. Dev Biol 328, 363-376 crossref(new window)

14.
Kim JH, Kim HW, Jeon H, Suh PG and Ryu SH (2006) Phospholipase D1 regulates cell migration in a lipase activity-independent manner. J Biol Chem 281, 15747-15756 crossref(new window)

15.
Jenkins GM and Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62, 2305-2316 crossref(new window)

16.
Cockcroft S (2001) Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 58, 1674-1687 crossref(new window)

17.
Arnaoutova I and Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5, 628-635 crossref(new window)

18.
Ghim J, Moon JS, Lee CS et al (2014) Endothelial deletion of phospholipase D2 reduces hypoxic response and pathological angiogenesis. Arterioscler Thromb Vasc Biol 34, 1697-1703 crossref(new window)

19.
Hedrich HJ and Bullock GR (2004) The laboratory mouse, Elsevier Academic Press, Amsterdam; Boston

20.
Aplin AC, Fogel E, Zorzi P and Nicosia RF (2008) The aortic ring model of angiogenesis. Methods Enzymol 443, 119-136 crossref(new window)

21.
Baker M, Robinson SD, Lechertier T et al (2012) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7, 89-104 crossref(new window)

22.
Dougher M and Terman BI (1999) Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 18, 1619-1627 crossref(new window)

23.
Takahashi T, Yamaguchi S, Chida K and Shibuya M (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20, 2768-2778 crossref(new window)

24.
Holmqvist K, Cross MJ, Rolny C et al (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279, 22267-22275 crossref(new window)

25.
Dayanir V, Meyer RD, Lashkari K and Rahimi N (2001) Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem 276, 17686-17692 crossref(new window)

26.
Fujio Y and Walsh K (1999) Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 274, 16349-16354 crossref(new window)

27.
Warner AJ, Lopez-Dee J, Knight EL, Feramisco JR and Prigent SA (2000) The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growthfactor receptor KDR in transfected cells. Biochem J 347, 501-509 crossref(new window)

28.
Takahashi T, Ueno H and Shibuya M (1999) VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221-2230 crossref(new window)

29.
Kroll J and Waltenberger J (1997) The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 272, 32521-32527 crossref(new window)

30.
Matsumoto T, Bohman S, Dixelius J et al (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24, 2342-2353 crossref(new window)

31.
Zeng H, Sanyal S and Mukhopadhyay D (2001) Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively. J Biol Chem 276, 32714-32719 crossref(new window)

32.
Abedi H and Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272, 15442-15451 crossref(new window)

33.
Fulton D, Gratton JP, McCabe TJ et al (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601 crossref(new window)

34.
Schlaeppi JM and Wood JM (1999) Targeting vascular endothelial growth factor (VEGF) for anti-tumor therapy, by anti-VEGF neutralizing monoclonal antibodies or by VEGF receptor tyrosine-kinase inhibitors. Cancer Metastasis Rev 18, 473-481 crossref(new window)

35.
Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435-439 crossref(new window)

36.
Ferrara N, Carver-Moore K, Chen H et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439-442 crossref(new window)

37.
Fong GH, Rossant J, Gertsenstein M and Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70 crossref(new window)

38.
Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-66 crossref(new window)

39.
Dumont DJ, Jussila L, Taipale J et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946-949 crossref(new window)

40.
Sugimoto H, Hamano Y, Charytan D et al (2003) Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278, 12605-12608 crossref(new window)

41.
Czarkowska-Paczek B, Bartlomiejczyk I and Przybylski J (2006) The serum levels of growth factors: PDGF, TGF-beta and VEGF are increased after strenuous physical exercise. J Physiol Pharmacol 57, 189-197

42.
Takano S, Yoshii Y, Kondo S et al (1996) Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res 56, 2185-2190

43.
Kim GY, Park SY, Jo A et al (2015) Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade. BMB Rep 48, 531-536 crossref(new window)

44.
Qin JF, Jin FJ, Li N et al (2015) Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment. BMB Rep 48, 295-300 crossref(new window)