Advanced SearchSearch Tips
Structural and dynamic views of the CRISPR-Cas system at the single-molecule level
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 49, Issue 4,  2016, pp.201-207
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2016.49.4.042
 Title & Authors
Structural and dynamic views of the CRISPR-Cas system at the single-molecule level
Lee, Seung Hwan; Bae, Sangsu;
  PDF(new window)
The CRISPR-Cas system has emerged as a fascinating and important genome editing tool. It is now widely used in biology, biotechnology, and biomedical research in both academic and industrial settings. To improve the specificity and efficiency of Cas nucleases and to extend the applications of these systems for other areas of research, an understanding of their precise working mechanisms is crucial. In this review, we summarize current studies on the molecular structures and dynamic functions of type I and type II Cas nucleases, with a focus on target DNA searching and cleavage processes as revealed by single-molecule observations.
CRISPR-Cas system;Crystal structure;Single molecule;Type I CRISPR;Type II CRISPR;
 Cited by
Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 crossref(new window)

Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. eLife 2, e00471 crossref(new window)

Hwang WY1, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227-229 crossref(new window)

Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 crossref(new window)

Cho SW, Kim S, Kim JM, & Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232 crossref(new window)

Barrangou R (2014) RNA events. Cas9 targeting and the CRISPR revolution. Science 344, 707-708 crossref(new window)

Doudna JA & Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 crossref(new window)

Shalem O, Sanjana NE, & Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16, 299-311 crossref(new window)

Sander JD & Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355 crossref(new window)

Kim H & Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15, 321-334 crossref(new window)

Travis J (2015) Making the cut. Science 350, 1456-1457 crossref(new window)

Marraffini LA & Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11, 181-190 crossref(new window)

Wiedenheft B, Sternberg SH, & Doudna JA (2012) RNAguided genetic silencing systems in bacteria and archaea. Nature 482, 331-338 crossref(new window)

Bhaya D, Davison M, & Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297 crossref(new window)

van der Oost J, Westra ER, Jackson RN, & Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12, 479-492 crossref(new window)

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 crossref(new window)

Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21, 528-534 crossref(new window)

Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, & Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740 crossref(new window)

Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400 crossref(new window)

Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964 crossref(new window)

Carte J, Wang RY, Li H, Terns RM, & Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Gene Dev 22, 3489-3496 crossref(new window)

Tsui TK & Li H (2015) Structure Principles of CRISPR-Cas Surveillance and Effector Complexes. Annu Rev Biophys 44, 229-255 crossref(new window)

Westra ER, van Erp PB, Künne T et al (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46, 595-605 crossref(new window)

Jackson RN, Golden SM, van Erp PB et al (2014) Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345, 1473-1479 crossref(new window)

Jore MM, Lundgren M, van Duijn E et al (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18, 529-U141 crossref(new window)

Mulepati S, Heroux A, & Bailey S (2014) Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345, 1479-1484 crossref(new window)

Zhao H, Sheng G, Wang J et al (2014) Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515, 147-150 crossref(new window)

Wiedenheft B, Lander GC, Zhou K et al (2011) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477, 486-489 crossref(new window)

van Erp PB, Jackson RN, Carter J, Golden SM, Bailey S, Wiedenheft B (2015) Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res 43, 8381-8391 crossref(new window)

Thomas M, White RL, & Davis RW (1976) Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci U S A 73, 2294-2298 crossref(new window)

Wilson-Sali T & Hsieh TS (2002) Preferential cleavage of plasmid-based R-loops and D-loops by Drosophila topoisomerase IIIbeta. Proc Natl Acad Sci U S A 99, 7974-7979 crossref(new window)

Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 crossref(new window)

Biertumpfel C, Yang W, & Suck D (2007) Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature 449, 616-620 crossref(new window)

Sternberg SH, LaFrance B, Kaplan M, & Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527, 110-113 crossref(new window)

Anders C, Niewoehner O, Duerst A, & Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 crossref(new window)

Sternberg SH, Redding S, Jinek M, Greene EC, & Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67 crossref(new window)

Szczelkun MD, Tikhomirova MS, Sinkunas T et al (2014) Direct observation of R-loop formation by single RNAguided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 111, 9798-9803 crossref(new window)

Nishimasu H, Cong L, Yan WX et al (2015) Crystal Structure of Staphylococcus aureus Cas9. Cell 162, 1113-1126 crossref(new window)

Joo C, Balci H, Ishitsuka Y, Buranachai C, & Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77, 51-76 crossref(new window)

Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R (2015) Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection. Cell Rep [Epub ahead of print]

Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3, 945 crossref(new window)

Fineran PC, Gerritzen MJ, Suárez-Diez M et al (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A 111, E1629-1638 crossref(new window)

Blosser TR, Loeff L, Westra ER et al (2015) Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol Cell 58, 60-70 crossref(new window)