JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MiR-146 and miR-125 in the regulation of innate immunity and inflammation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : BMB Reports
  • Volume 49, Issue 6,  2016, pp.311-318
  • Publisher : Korean Society for Biochemistry and Molecular Biology
  • DOI : 10.5483/BMBRep.2016.49.6.056
 Title & Authors
MiR-146 and miR-125 in the regulation of innate immunity and inflammation
Lee, Hye-Mi; Kim, Tae Sung; Jo, Eun-Kyeong;
  PDF(new window)
 Abstract
Innate immune responses are primary, relatively limited, and specific responses to numerous pathogens and toxic molecules. Protein expression involved in these innate responses must be tightly regulated at both transcriptional level and post-transcriptional level to avoid the development of excessive inflammation that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs (∼22 nucleotides [nts]) that participate in the regulation of numerous physiological responses by targeting specific messenger RNAs to suppress their translation. Recent work has shown that several negative regulators of transcription including microRNAs play important roles in inhibiting the exacerbation of inflammatory responses and in the maintenance of immunological homeostasis. This emerging research area will provide new insights on how microRNAs regulate innate immune signaling. It might show that dysregulation of microRNA synthesis is associated with the pathogenesis of inflammatory and infectious diseases. In this review, we focused on miR-146 and miR-125 and described the roles these miRNAs in modulating innate immune signaling. These microRNAs can control inflammatory responses and the outcomes of pathogenic infections.
 Keywords
Inflammation;Innate immune;MicroRNA;miR-125;miR-146;
 Language
English
 Cited by
 References
1.
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 crossref(new window)

2.
Fabian MR, Sonenberg N and Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79, 351-379 crossref(new window)

3.
Friedman JM and Jones PA (2009) MicroRNAs: critical mediators of differentiation, development and disease. Swiss Med Wkly 139, 466-472

4.
Guo H, Ingolia NT, Weissman JS and Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840 crossref(new window)

5.
Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 crossref(new window)

6.
O’Connell RM, Rao DS, Chaudhuri AA and Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10, 111-122 crossref(new window)

7.
El Gazzar M and McCall CE (2012) MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators. Immunol Cell Biol 90, 587-593 crossref(new window)

8.
Iliopoulos D (2014) MicroRNA circuits regulate the cancer-inflammation link. Sci Signal 7, pe8 crossref(new window)

9.
Baltimore D, Boldin MP, O’Connell RM, Rao DS and Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9, 839-845 crossref(new window)

10.
Pauley KM, Cha S and Chan EK (2009) MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 32, 189-194 crossref(new window)

11.
Dai R and Ahmed SA (2011) MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 157, 163-179 crossref(new window)

12.
Olivieri F, Procopio AD and Montgomery RR (2014) Effect of aging on microRNAs and regulation of pathogen recognition receptors. Curr Opin Immunol 29, 29-37 crossref(new window)

13.
O’Neill LA, Sheedy FJ and McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11, 163-175 crossref(new window)

14.
Kumar H, Kawai T and Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30, 16-34 crossref(new window)

15.
Kawai T and Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11, 373-384 crossref(new window)

16.
Kawai T and Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650 crossref(new window)

17.
Ishii KJ, Koyama S, Nakagawa A, Coban C and Akira S (2008) Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352-363 crossref(new window)

18.
Clark K, Nanda S and Cohen P (2013) Molecular control of the NEMO family of ubiquitin-binding proteins. Nat Rev Mol Cell Biol 14, 673-685 crossref(new window)

19.
Kawai T and Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13, 460-469 crossref(new window)

20.
Arthur JS and Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13, 679-692 crossref(new window)

21.
Coll RC and O'Neill LA (2010) New insights into the regulation of signalling by toll-like receptors and nod-like receptors. J Innate Immun 2, 406-421 crossref(new window)

22.
Symons A, Beinke S and Ley SC (2006) MAP kinase kinase kinases and innate immunity. Trends Immunol 27, 40-48 crossref(new window)

23.
Cohen P (2014) The TLR and IL-1 signalling network at a glance. J Cell Sci 127, 2383-2390 crossref(new window)

24.
Kim VN, Han J and Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126-139 crossref(new window)

25.
Filipowicz W, Bhattacharyya SN and Sonenberg N (2008) Mechanisms of post-transcriptional regulation by micro-RNAs: are the answers in sight? Nat Rev Genet 9, 102-114 crossref(new window)

26.
Mendell JT and Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148, 1172-1187 crossref(new window)

27.
Lee RC, Feinbaum RL and Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 crossref(new window)

28.
Wightman B, Ha I and Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862 crossref(new window)

29.
Olive V, Minella AC and He L (2015) Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci Signal 8, re2 crossref(new window)

30.
Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834-838 crossref(new window)

31.
Negrini M, Ferracin M, Sabbioni S and Croce CM (2007) MicroRNAs in human cancer: from research to therapy. J Cell Sci 120, 1833-1840 crossref(new window)

32.
McGregor RA and Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11, 304-316 crossref(new window)

33.
Lee YS and Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4, 199-227 crossref(new window)

34.
Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419 crossref(new window)

35.
Han J, Lee Y, Yeom KH, Kim YK, Jin H and Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016-3027 crossref(new window)

36.
Lund E, Güttinger S, Calado A, Dahlberg JE and Kutay U (2004) Nuclear export of microRNA precursors. Science 303, 95-98 crossref(new window)

37.
Yi R, Qin Y, Macara IG and Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016 crossref(new window)

38.
Bernstein E, Caudy AA, Hammond SM and Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366 crossref(new window)

39.
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T and Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838 crossref(new window)

40.
Salzman DW, Shubert-Coleman J and Furneaux H (2007) P68 RNA helicase unwinds the human let-7 microRNA precursor duplex and is required for let-7-directed silencing of gene expression. J Biol Chem 282, 32773-32779 crossref(new window)

41.
Chendrimada TP, Gregory RI and Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744 crossref(new window)

42.
Kawamata T and Tomari Y (2010) Making RISC. Trends Biochem Sci 35, 368-376 crossref(new window)

43.
Witkos TM, Koscianska E and Krzyzosiak WJ (2011) Practical Aspects of microRNA Target Prediction. Curr Mol Med 11, 93-109 crossref(new window)

44.
Sonkoly E, Ståhle M and Pivarcsi A (2008) MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 18, 131-140 crossref(new window)

45.
Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29, 343-351 crossref(new window)

46.
T Taganov KD, Boldin MP, Chang KJ and Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103, 12481-12486 crossref(new window)

47.
O’Connell RM, Taganov KD, Boldin MP, Cheng G and Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104, 1604-1609 crossref(new window)

48.
Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG and Lindsay MA (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8, 240 crossref(new window)

49.
Tili E, Michaille JJ, Cimino A et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179, 5082-5089 crossref(new window)

50.
Banerjee S, Cui H, Xie N et al (2013) miR-125a-5p regulates differential activation of macrophages and inflammation. J Biol Chem 288, 35428-35436 crossref(new window)

51.
Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F and Locati M (2013) Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A 110, 11499-11504 crossref(new window)

52.
Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS and Liu ZG (2010) MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 11, 799-805 crossref(new window)

53.
Saba R, Sorensen DL and Booth SA (2014) MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front Immunol 5, 578 crossref(new window)

54.
Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM and Lindsay MA (2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180, 5689-5698 crossref(new window)

55.
Williams AE, Perry MM, Moschos SA, Larner-Svensson HM and Lindsay MA (2008) Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans 36, 1211-1215 crossref(new window)

56.
Boldin MP, Taganov KD, Rao DS et al (2011) miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 208, 1189-1201 crossref(new window)

57.
Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM and Baltimore D (2011) NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A 108, 9184-9189 crossref(new window)

58.
Starczynowski DT, Kuchenbauer F, Argiropoulos B et al (2010) Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 16, 49-58 crossref(new window)

59.
Cui JG, Li YY, Zhao Y, Bhattacharjee S and Lukiw WJ (2010) Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 285, 38951-38960 crossref(new window)

60.
Park H, Huang X, Lu C, Cairo MS and Zhou X (2015) MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem 290, 2831-2841 crossref(new window)

61.
Nahid MA, Pauley KM, Satoh M and Chan EK (2009) miR-146a is critical for endotoxin-induced tolerance: IMPLICATION IN INNATE IMMUNITY. J Biol Chem 284, 34590-34599 crossref(new window)

62.
Gao M, Wang X, Zhang X et al (2015) Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. J Immunol 195, 672-682 crossref(new window)

63.
Miyata R, Kakuki T, Nomura K et al (2015) Poly(I:C) induced microRNA-146a regulates epithelial barrier and secretion of proinflammatory cytokines in human nasal epithelial cells. Eur J Pharmacol 761, 375-382 crossref(new window)

64.
Rebane A, Runnel T, Aab A et al (2014) MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 134, 836-847 e811 crossref(new window)

65.
Meisgen F, Xu Landén N and Wang A et al (2014) MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J Invest Dermatol 134, 1931-1940 crossref(new window)

66.
Echavarria R, Mayaki D, Neel JC, Harel S, Sanchez V and Hussain SN (2015) Angiopoietin-1 inhibits toll-like receptor 4 signalling in cultured endothelial cells: role of miR-146b-5p. Cardiovasc Res 106, 465-477 crossref(new window)

67.
Schnitger AK, Machova A, Mueller RU et al (2011) Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response. PLoS One 6, e27435 crossref(new window)

68.
Kim JK, Yuk JM, Kim SY et al (2015) MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection. J Immunol 194, 5355-5365 crossref(new window)

69.
Androulidaki A, Iliopoulos D, Arranz A et al (2009) The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31, 220-231 crossref(new window)

70.
Murphy AJ, Guyre PM and Pioli PA (2010) Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol 184, 5029-5037 crossref(new window)

71.
Busch S, Auth E, Scholl F et al (2015) 5-lipoxygenase is a direct target of miR-19a-3p and miR-125b-5p. J Immunol 194, 1646-1653 crossref(new window)

72.
Chaudhuri AA, So AY, Sinha N et al (2011) MicroRNA-125b potentiates macrophage activation. J Immunol 187, 5062-5068 crossref(new window)

73.
Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH and Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10, R101 crossref(new window)

74.
Fang J, Barker B, Bolanos L et al (2014) Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-κB gene network. Cell Rep 8, 1328-1338 crossref(new window)

75.
Varney ME, Niederkorn M, Konno H et al (2015) Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med 212, 1967-1985 crossref(new window)

76.
Li JF, Dai XP, Zhang W et al (2015) Upregulation of microRNA-146a by hepatitis B virus X protein contributes to hepatitis development by downregulating complement factor H. MBio 6, pii: e02459-02414 crossref(new window)

77.
Zhao X, Tang Y, Qu B et al (2010) MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 62, 3425-3435 crossref(new window)

78.
Reijerkerk A, Lopez-Ramirez MA, van Het Hof B et al (2013) MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 33, 6857-6863 crossref(new window)

79.
Pan W, Zhu S, Dai D et al (2015) MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nat Commun 6, 7096 crossref(new window)

80.
Zhang XH, Zhang YN, Li HB et al (2012) Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med 185, 140-151 crossref(new window)