JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXPLICIT MINIMUM POLYNOMIAL, EIGENVECTOR AND INVERSE FORMULA OF DOUBLY LESLIE MATRIX
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXPLICIT MINIMUM POLYNOMIAL, EIGENVECTOR AND INVERSE FORMULA OF DOUBLY LESLIE MATRIX
WANICHARPICHAT, WIWAT;
 
 Abstract
The special form of Schur complement is extended to have a Schur`s formula to obtains the explicit formula of determinant, inverse, and eigenvector formula of the doubly Leslie matrix which is the generalized forms of the Leslie matrix. It is also a generalized form of the doubly companion matrix, and the companion matrix, respectively. The doubly Leslie matrix is a nonderogatory matrix.
 Keywords
Schur complement;Leslie matrix;doubly Leslie matrix;companion matrix;Toeplitz matrix;nonderogatory matrix;eigenvalue;eigenvector;
 Language
English
 Cited by
 References
1.
N. Bacaër, A Short History of Mathematical Population Dynamics, Springer, New York, 2011.

2.
L. Brand, The companion matrix and its properties, The American Mathematical Monthly, 71(6) (1964) 629-634. crossref(new window)

3.
C. Brezinski, Other Manifestations of the Schur Complement, Linear Algebra Appl., 111 (1988) 231-247. crossref(new window)

4.
J.C. Butcher and P. Chartier, The effective order of singly-implicit Runge-Kutta methods, Numerical Algorithms, 20 (1999), 269-284. crossref(new window)

5.
M.Q. Chen and X. Li, Spectral properties of a near-periodic row-stochastic Leslie matrix, Linear Algebra Appl., 409 (2005), 166-186. crossref(new window)

6.
R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1996.

7.
S.J. Kirkland and M. Neumann, Convexity and concavity of the Perron root and vector of Leslie matrices with applications to a population model, SIAM J. Matrix Anal. Appl., 15(4) (1994), 1092-1107. crossref(new window)

8.
P. Lancaster and M. Tismenetsky, The Theory of Matrices Second Edition with Applications, Academic Press Inc., San Diego, 1985.

9.
C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

10.
S. Moritsugu and K. Kuriyama, A linear algebra method for solving systems of algebraic equations, J. Jap. Soc. Symb. Alg. Comp. (J. JSSAC), 7/4 (2000), 2-22.

11.
D. Poole, Linear Algebra: A Modern Introduction, Second Edition, Thomson Learning, London, 2006.

12.
W. Wanicharpichat, Nonderogatory of sum and product of doubly companion matrices, Thai J. Math., 9(2) (2011), 337-348.

13.
W. Wanicharpichat, Explicit eigenvectors formulae for lower doubly companion matrices, Thai J. Math., 11(2) (2013), 261-274.

14.
F. Zhang, The Schur Complement and Its Applications, in Series: Numerical Methods and Algorithms, Springer, Inc., New York, 2005.