JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE SPECIAL VALUES OF TORNHEIM`S MULTIPLE SERIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE SPECIAL VALUES OF TORNHEIM`S MULTIPLE SERIES
KIM, MIN-SOO;
 
 Abstract
Recently, Jianxin Liu, Hao Pan and Yong Zhang in [On the integral of the product of the Appell polynomials, Integral Transforms Spec. Funct. 25 (2014), no. 9, 680-685] established an explicit formula for the integral of the product of several Appell polynomials. Their work generalizes all the known results by previous authors on the integral of the product of Bernoulli and Euler polynomials. In this note, by using a special case of their formula for Euler polynomials, we shall provide several reciprocity relations between the special values of Tornheim`s multiple series.
 Keywords
Tornheim`s multiple series;Euler polynomials;Euler numbers;Bernoulli polynomials;Bernoulli numbers;Integrals.;
 Language
English
 Cited by
 References
1.
T. Arakawa, T. Ibukiyama, and M. Kaneko, Bernoulli Numbers and Zeta Functions, with an appendix by Don Zagier, Springer, Japan 2014.

2.
M. Abramowitz and I. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover, New York, 1972.

3.
T. Agoh and K. Dilcher, Integrals of products of Bernoulli polynomials, J. Math. Anal. Appl. 381 (2011) 10–16. crossref(new window)

4.
L. Carlitz, Note on the integral of the product of several Bernoulli polynomials, J. London Math. Soc. 34 (1959) 361–363. crossref(new window)

5.
D. Cvijović and J. Klinowski, New formulae for the Bernoulli and Euler polynomials at rational arguments, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1527–1535. crossref(new window)

6.
M. Cihat Dagli, M. Can, On reciprocity formula of character Dedekind sums and the integral of products of Bernoulli polynomials, http://arxiv.org/abs/1412.7363.

7.
O. Espinosa and V.H. Moll, The evaluation of Tornheim double sums. I, J. Number Theory 116 (2006) 200–229. crossref(new window)

8.
S. Hu, D. Kim and M.-S. Kim, On the integral of the product of four and more Bernoulli polynomials, Ramanujan J. 33 (2014), 281–293. crossref(new window)

9.
J. Liu, H. Pan and Y. Zhang, On the integral of the product of the Appell polynomials, Integral Transforms Spec. Funct. 25 (2014), no. 9, 680–685. crossref(new window)

10.
L.J. Mordell, On the evaluation of some multiple series, J. London Math. Soc. 33 (1958) 368–371. crossref(new window)

11.
L.J. Mordell, Integral formulae of arithmetical character, J. London Math. Soc. 33 (1958) 371–375. crossref(new window)

12.
N. Nielsen, Traité elementaire des nombres de Bernoulli, Gauthier-Villars, Paris, 1923.

13.
N.E. Nörlund, Vorlesungen uber Differenzenrechnung, Springer-Verlag, Berlin, 1924.

14.
K. Onodera, Generalized log sine integrals and the Mordell-Tornheim zeta values, Trans. Amer. Math. Soc. 363 (2011) 1463–1485. crossref(new window)

15.
G. Shimura, Elementary Dirichlet series and modular forms, Springer, 2007.

16.
M.V. Subbarao and R. Sitaramachandra Rao, On the infinite seriers of L. J. Mordell and their analogues, Pacific J. Math 119 (1985), 245–255. crossref(new window)

17.
Z.-W. Sun, Introduction to Bernoulli and Euler polynomials, A Lecture Given in Taiwan on June 6, 2002. http://math.nju.edu.cn/zwsun/BerE.pdf.

18.
H. Tsumura, On alternating analogues of Tornheim’s double series, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3633–3641. crossref(new window)

19.
H. Tsumura, Multiple harmonic series related to multiple Euler numbers, J. Number Theory 106 (2004), no. 1, 155–168. crossref(new window)

20.
J.C. Wilson, On Franel-Kluyver integrals of order three, Acta Arith. 66 (1994) 71–87.