JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE ZAGREB INDICES OF BIPARTITE GRAPHS WITH MORE EDGES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE ZAGREB INDICES OF BIPARTITE GRAPHS WITH MORE EDGES
XU, KEXIANG; TANG, KECHAO; LIU, HONGSHUANG; WANG, JINLAN;
 
 Abstract
For a (molecular) graph, the first and second Zagreb indices (M1 and M2) are two well-known topological indices, first introduced in 1972 by Gutman and Trinajstić. The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Let with n1 n2, n1 + n2
 Keywords
Vertex degree;Zagreb index;Bipartite graph;
 Language
English
 Cited by
1.
On Molecular Topological Properties of TiO2 Nanotubes, Journal of Nanoscience, 2016, 2016, 1  crossref(new windwow)
2.
Narumi–Katayama index of total transformation graphs, Discrete Mathematics, Algorithms and Applications, 2017, 09, 03, 1750033  crossref(new windwow)
 References
1.
A.R. Ashrafi, T. Došlić and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010), 1571-1578. crossref(new window)

2.
A.R. Ashrafi, T. Došlić and A. Hamzeh, Extremal graphs with respect to the Zagreb coindices, MATCH Commun. Math. Comput. Chem. 65 (2011), 85-92.

3.
A.T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, Topological indices for structure- activity corrections, Topics Curr. Chem. 114 (1983), 21-55. crossref(new window)

4.
J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.

5.
K.C. Das, Maximizing the sum of the squares of degrees of a graph, Discrete Math. 257 (2004), 57-66. crossref(new window)

6.
K.C. Das, N. Akgünes, M. Togan, A. Yurttas, I.N. Cangül and A.S. Cevik, On the first Za-greb index and multiplicative Zagreb coindices of graphs, Analele Stiintifice ale Universitatii Ovidius Constanta, in press.

7.
K.C. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009), 514-521. crossref(new window)

8.
K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004), 103-112.

9.
H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 597-616.

10.
T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008), 66-80.

11.
M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 217-230.

12.
I. Gutman, Multiplicative Zagreb indices of trees, Bulletin of Society of Mathematicians Banja Luka 18 (2011), 17-23.

13.
I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013), 351-361. crossref(new window)

14.
I. Gutman, An exceptional property of first Zagreb index, MATCH Commun. Math. Comput. Chem. 72 (2014) 733-740.

15.
I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.

16.
I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.

17.
I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. III. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538. crossref(new window)

18.
I. Gutman, B. Ruščić, N. Trinajstić and C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405. crossref(new window)

19.
B. Lučić, S. Nikolić and N. Trinajstić, Zagreb indices, in: Chemical information and computational challenges in the 21st century, edited by M.V. Putz, Nova Sci. Publ. New York, 2012, 261-275.

20.
S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113-124.

21.
R. Todeschini, D. Ballabio and V. Consonni, Novel molecular descriptors based on func-tions of new vertex degrees, In: Novel molecular structure descriptors - Theory and applications I. (I. Gutman, B. Furtula, eds.), pp. 73-100. Kragujevac: Univ. Kragujevac 2010.

22.
R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

23.
R. Todeschini and V. Consonni, Zagreb indices (Mn), in: Molecular descriptors for chemoinformatics, Wiley-VCH, Weinheim, I(2009), 955-966.

24.
R. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010), 359-372.

25.
N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.

26.
K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett. 24 (2011), 1026-1030. crossref(new window)

27.
K. Xu and K.C. Das, Trees, unicyclic, and bicyclic graphs extremal with respect to multi-plicative sum Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 257-272.

28.
K. Xu, K.C. Das and S. Balachandran, Maximizing the Zagreb indices of (n,m)- graphs, MATCH Commun. Math. Comput. Chem. 72 (2014), 641-654.

29.
K. Xu, K.C. Das and K. Tang, On the multiplicative Zagreb coindex of graphs, Opuscula Math. 33 (2013), 197-210.

30.
K. Xu and H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012), 241-256.