JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOLVING OPERATOR EQUATIONS Ax
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOLVING OPERATOR EQUATIONS Ax
LEE, SANG KI; KANG, JOO HO;
 
 Abstract
In this paper the following is proved: Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. If XE
 Keywords
Interpolation Problem;Subspace Lattice;AlgL;CSL-AlgL;
 Language
English
 Cited by
 References
1.
R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. crossref(new window)

2.
Y.S. Jo and J.H. Kang, Interpolation problems in CSL-algebras AlgL, Rocky Mountain J. of Math. 33 (2003), 903-914. crossref(new window)

3.
Y.S. Jo and J.H. Kang, Interpolation problems in AlgL, J. Appl. Math. & Computing 18 (2005), 513-524.

4.
Y.S. Jo, J.H. Kang and K.S. Kim, On operator interpolation problems, J. Korean Math. Soc. 41 (2004), 423-433. crossref(new window)

5.
Y.S. Jo, J.H. Kang, R.L. Moore and T.T. Trent, Interpolation in self-adjoint settings, Proc. Amer. Math. Soc. 130, 3269-3281. crossref(new window)

6.
J.H. Kang, Compact interpolation on AX = Y in AlgL, J. Appl. Math. & Informatics 32 (2014), 441-446. crossref(new window)

7.
E.C. Lance, Some properties of nest algebras, Proc. London Math. Soc. 19(III) (1969), 45-68. crossref(new window)