JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A DELAY DYNAMIC MODEL FOR HIV INFECTED IMMUNE RESPONSE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A DELAY DYNAMIC MODEL FOR HIV INFECTED IMMUNE RESPONSE
BERA, S.P.; MAITI, A.; SAMANTA, G.P.;
 
 Abstract
Human Immune Deficiency Virus (or simply HIV) induces a persistent infection that leads to AIDS causing death in almost every infected individual. As HIV affects the immune system directly by attacking the CD4+ T cells, to exterminate the infection, the natural immune system produces virus-specific cytotoxic T lymphocytes(CTLs) that kills the infected CD4+ T cells. The reduced CD4+ T cell count produce reduced amount of cytokines to stimulate the production of CTLs to fight the invaders that weakens the body immunity succeeding to AIDS. In this paper, we introduce a mathematical model with discrete time-delay to represent this cell dynamics between CD4+ T cells and the CTLs under HIV infection. A modified functional form has been considered to describe the infection mechanism. Characteristics of the system are studied through mathematical analysis. Numerical simulations are carried out to illustrate the analytical findings.
 Keywords
HIV;immune response;stability;delay;Hopfbifurcation;
 Language
English
 Cited by
 References
1.
AIDS epidemic update, UNAIDS, (2005), www.unaids.org.

2.
R.M. Anderson, The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS, J. Acquir. Immune Defic. Syndr. 1 (1988), 241–256.

3.
R.A. Arnaout, M.A. Nowak and D. Wodarz, HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing? Proc. Roy. Soc. Lond. B 265 (2000), 1347?1354. crossref(new window)

4.
M. Bachar and A. Dorfmayr, HIV treatment models with time delay, C. R. Biol. 327 (2004), 983–994. crossref(new window)

5.
S. Bajaria, G. Webb and D. Kirschner, Predicting differential responses to structured treatment interruptions during HAART, Bull. Math. Biol. 66 (2004), 1093–1118. crossref(new window)

6.
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM. J. Math. Anal. 33 (2002), 1144–1165. crossref(new window)

7.
S. Bonhoeffer, J. Coffin and M. Nowak, Human Immunodeficiency Virus drug therapy and virus load, J. Virol. 71 (1997), 3275–3278.

8.
S. Bonhoeffer, G. Shaw, R. May and M. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. 94 (1997), 6971–6976. crossref(new window)

9.
G. Birkhoff and G.C. Rota, Ordinary Differential Equations, Ginn and Co., Boston, 1982.

10.
L.M. Cai, X. Li, M. Ghosh and B. Guo, Stability of an HIV/AIDS epidemic model with treatment. J. Comput. Appl. Math. 229 (2009), 313–323. crossref(new window)

11.
D. Callaway and A. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol. 64 (2002), 29–64. crossref(new window)

12.
T.W. Chun, D.C. Nickle, J.S. Justement, D. Large, A. Semerjian, M.E. Curlin, M.A. O’Shea, C.W. Hallahan, M. Daucher and other authors, HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir, J. Clin. Invest. 115 (2005), 3250–3255. crossref(new window)

13.
M.C. Connell, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci. 181 (2003), 1–16. crossref(new window)

14.
R.V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci. ,165 (2000), 27–39. crossref(new window)

15.
R.V. Culshaw, S. Ruan and R.J. Spiteri, Optimal treatment by maximisining immune response, J. Math. Biol. 48 (2004), 545–562. crossref(new window)

16.
N. Dalal, D. Greenhalgh and X. Mao, Mathematical modelling of internal HIV dynamics, Discrete and Continuous Dynamical Systems - Series B 12 (2009), 305–321. crossref(new window)

17.
K. Gopalsamy, Stability and Oscillations in Delay-Differential Equations of Population Dynamics, Kluwer, Dordrecht, 1992.

18.
A.B. Gumel, C.C. McCluskey and P. van den Driessche, Mathematical study of a stagedprogressive HIV model with imperfect vaccine, Bull. Math. Biol. 68 (2006), 2105–2128. crossref(new window)

19.
HIV infection and AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, USA, (2006), www.niaid.nih.gov.

20.
A.V.M. Herz, S. Bonhoeffer, R.M. Anderson, R.M. May and M.A. Nowak, Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. Nat. Acad. Sci. USA. 93 (1996), 7247–7251. crossref(new window)

21.
H.W. Hethcote, M.A. Lewis and P. van den Driessche, An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol. 27 (1989), 49–64. crossref(new window)

22.
T.W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations, J. Math. Biol. 46 (2003), 17–30. crossref(new window)

23.
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, London, 1993.

24.
R.M. May and R.M. Anderson, Transmission dynamics of HIV infection, Nature 326 (1987), 137–142. crossref(new window)

25.
P. Nelson, J. Murray and A. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci. 163 (2000), 201–215. crossref(new window)

26.
M. Nowak, S. Bonhoeffer, G. Shaw and R. May, Antiviral drug treatment: dynamics of resistance in free virus and infected cell populations, J. Theor. Biol. 184 (1997), 203–217. crossref(new window)

27.
A.S. Perelson, D.E. Kirschner and R. DeBoer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci. 114 (1993), 81-125. crossref(new window)

28.
A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard and D.D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), 1582–1586. crossref(new window)

29.
A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41 (1999), 3–44. crossref(new window)

30.
G.P. Samanta, Analysis of a nonautonomous HIV/AIDS model. Math. Model. Nat. Phenom. 5 (2010), 70–95. crossref(new window)

31.
G.P. Samanta, Analysis of a nonautonomous HIV/AIDS epidemic model with distributed time delay, Math. Model. Anal. 15 (2010), 327–347. crossref(new window)

32.
G.P. Samanta, Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay, Nonlinear Anal. Real World Appl. 12 (2011), 1163–1177. crossref(new window)

33.
M. Stafford, C. Lawrence, Y. Cao, E. Daar, D. Ho and A. Perelson, Modelling plasma virus concentration during primary HIV infection, J. Theor. Biol. 203 (2000), 285–301. crossref(new window)

34.
S. Sharma and G.P. Samanta, Dynamical behaviour of a tumor-immune system with chemotherapy and optimal control, J. Nonlinear Dynamics 2013 (2013), Article ID 608598, DOI 10.1155/2013/608598. crossref(new window)

35.
S. Sharma and G.P. Samanta, Dynamical behaviour of an HIV/AIDS epidemic model, Differential Equations and Dynamical Systems 22 (2014), 369–395. crossref(new window)

36.
E. Vergu, A. Mallet and J. Golmard, A modelling approach to the impact of HIV mutations on the immune system, Computers Biol. Med. 35 (2005), 1–24. crossref(new window)

37.
P.A. Volberding and S.G. Deeks, Antiretroviral therapy and management of HIV infection, Lancet 3 (2010), 49–62. crossref(new window)

38.
L. Wang and M.Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T-cells, Math. Biosci. 200 (2006), 44–57. crossref(new window)

39.
D.Wodarz and M. Nowak, Specific therapies could lead to long-term immunological control of HIV, Proc. Natl. Acad. Sci. 96 (1999), 464–469. crossref(new window)