JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE NORMS OF SOME SPECIAL MATRICES WITH GENERALIZED FIBONACCI SEQUENCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE NORMS OF SOME SPECIAL MATRICES WITH GENERALIZED FIBONACCI SEQUENCE
RAZA, ZAHID; ALI, MUHAMMAD ASIM;
 
 Abstract
In this study, we define r-circulant, circulant, Hankel and Toeplitz matrices involving the integer sequence with recurrence relation Un
 Keywords
Circulant;r-circulant;semi-circulant;Hankel;spectral norm;Euclidean norm;
 Language
English
 Cited by
 References
1.
M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacettepe J. Math. Stat. 37 (2008), 89-95.

2.
S. Halici, On some inequality and hankel matrices involving Pell, Pell Lucas numbers, Math. Reports 65 (2013), 1-10.

3.
D. Kalman and R. Mena, The Fibonacci Numbers, The Mathematical Magazine 2 (2002), 12-24.

4.
T. Koshy, Fibonacci and Lucas numbers with applications, Wiley-Interscience Publications, (2001).

5.
E. Kilic, Sums of the squares of terms of sequence {un}, Proc. Indian Acad. Sci.(Math. Sci.) 118 (2008), 27-41. crossref(new window)

6.
E.G. Kocer, Circulant, negacyclic and semicirculant matrices with the modified Pell, Ja-cobsthal and Jacobsthal-Lucas numbers, Hacettepe J. Math. Stat. 36 (2007), 133-142.

7.
R. Mathias, The spectral norm of nonnegative matrix, Linear Algebra Appl. 131 (1990), 269-284. crossref(new window)

8.
Z, Raza and M.A. Ali, On the norms of circulant, r- circulant, semi-sirculant and Hankel matrices with tribonacci sequence, arXiv(2014):1407.1369.

9.
R. Reams, Hadamard inverses , square roots and products of almost semidefinite matrices, Linear Algebra Appl. 288 (1999), 35-43. crossref(new window)

10.
S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput. 160 (2005), 125-132. crossref(new window)

11.
J. Shen and J. Cen, On the spectral norms of r -circulant matrices with the k-Fibonacci and k-Lucas numbers, Int. J. Contemp. Math. Sciences 12 (2010), 569-578.

12.
S. Solak and D. Bozkurt, On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Appl. Math. Comput. 140 (2003), 231-238. crossref(new window)

13.
G. Zielke, Some remarks on matrix norms, condition numbers and error estimates for linear equations, Linear Algebra Appl. 110 (1988), 29-41. crossref(new window)