JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HOMOCLINIC SOLUTIONS FOR A PRESCRIBED MEAN CURVATURE RAYLEIGH p-LAPLACIAN EQUATION WITH A DEVIATING ARGUMENT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HOMOCLINIC SOLUTIONS FOR A PRESCRIBED MEAN CURVATURE RAYLEIGH p-LAPLACIAN EQUATION WITH A DEVIATING ARGUMENT
KONG, FANCHAO;
 
 Abstract
In this paper, the prescribed mean curvature Rayleigh p-Laplacian equation with a deviating argument
 Keywords
Homoclinic solution;Continuation theorem;Prescribed mean curvature;
 Language
English
 Cited by
 References
1.
M. Lzydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differ. Equ. 219 (2005), 375-389. crossref(new window)

2.
P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. R. Soc. Edinb. A 114 (1990), 33-38. crossref(new window)

3.
X.H. Tang and L. Xiao, Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential, Nonlinear Anal. TMA 71 (2009), 1124-1322. crossref(new window)

4.
S. Lu, Homoclinic solutions for a class of second-order p-Laplacian differential systems with delay, Nonlinear Anal., Real World Appl. 12 (2011), 780-788. crossref(new window)

5.
D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differ. Equ. 243 (2007), 208-237. crossref(new window)

6.
H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal. 70 (2009), 999-1010. crossref(new window)

7.
P. Benevieria, J.M. Do ó and E.s. Medeiros, Periodic solutions for nonlinear systems with mean curvature-like operators, Nonlinear Anal. 65 (2006), 1462-1475. crossref(new window)

8.
W. Li and Z. Liu, Exact number of solutions of a prescribed mean curvature equation, Journal of Mathematical Analysis and Applications, 367 (2010), 486-498. crossref(new window)

9.
P. Habets and P. Omari, Multiple positive solutions of a one dimensional prescribed mean curvature problem, Communications in Contemporary Mathematics, 95 (2007), 701-730. crossref(new window)

10.
N.D. Brubaker and J.A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Analysis, Theory, Methods Applications, 75 (2012), 5086-5102. crossref(new window)

11.
M. Feng, Periodic solutions for prescribed mean curvature Li´enard equation with a deviating argument, Nonlinear Analysis, Real World Applications, 13 (2012), 1216-1223. crossref(new window)

12.
J. Li, Periodic solutions for prescribed mean curvature Rayleigh equation with a deviating argument, Adv. Differ. Equ. 2013 (2013) : 88. crossref(new window)

13.
Liang and Lu, Homoclinic solutions for a kind of prescribed mean curvature Duffing-type equation, Advances in Difference Equations, 2013 (2013) : 279.

14.
D. Wang, Existence and uniqueness of periodic solution for prescribed mean curvature Rayleigh type p-Laplacian equation, J. Appl. Math. Comput. 46 (2014), 181-200. crossref(new window)

15.
Li et al., Existence of periodic solutions for a prescribed mean curvature Liénard p-Laplacian equation with two delays, Advances in Difference Equations, 2014 (2014) : 290. crossref(new window)

16.
R.E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Mathematics, vol. 568. Springer, Berlin, 1977.

17.
Shiping Lu and Weigao Ge, Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument, Nonlinear Analysis, 56 (2004), 501-514. crossref(new window)

18.
Shiping Lu, On the existence of positive periodic solutions for neutral functional differential equation with multiple deviating arguments, J. Math. Anal. Appl. 280 (2003), 321-333. crossref(new window)