JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTERVAL VALUED (α, β)-INTUITIONISTIC FUZZY BI-IDEALS OF SEMIGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INTERVAL VALUED (α, β)-INTUITIONISTIC FUZZY BI-IDEALS OF SEMIGROUPS
ABDULLAH, SALEEM; ASLAM, MUHAMMAD; HUSSAIN, SHAH;
 
 Abstract
The concept of quasi-coincidence of interval valued intuitionistic fuzzy point with an interval valued intuitionistic fuzzy set is considered. By using this idea, the notion of interval valued (α, β)-intuitionistic fuzzy bi-ideals, (1,2)ideals in a semigroup introduced and consequently, a generalization of interval valued intuitionistic fuzzy bi-ideals and intuitionistic fuzzy bi-ideals is defined. In this paper, we study the related properties of the interval valued (α, β)-intuitionistic fuzzy bi-ideals, (1,2) ideals and in particular, an interval valued (Є, Є ∨q)-fuzzy bi-ideals and (1,2) ideals in semigroups will be investigated.
 Keywords
Semigroup;Interval valued (α, β)-intuitionistic fuzzy bi-ideal;Interval valued (Є, Є ∨q)-intuitionistic fuzzy bi-ideal;Interval valued (Є, Є ∨q)-intuitionistic fuzzy (1, 2) ideal;
 Language
English
 Cited by
 References
1.
L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353. crossref(new window)

2.
A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517. crossref(new window)

3.
N. Kuroki, On fuzzy semigroups, Inform. Sci. 53 (1991) 203-236. crossref(new window)

4.
N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems, 5 (1981), 203-215. crossref(new window)

5.
N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems, 8 (1982), 71-79. crossref(new window)

6.
N. Kuroki, On fuzzy semigroups, Inform. Sci. 53 (1991), 203-236. crossref(new window)

7.
N. Kuroki, Fuzzy generalized bi-ideals in semigroups, Inform. Sci. 66 (1992), 235-243. crossref(new window)

8.
N. Kuroki, On fuzzy semiprime quasi-ideals in semigroups, Inform. Sci. 75 (1993), 201-211. crossref(new window)

9.
N. Kuroki, Fuzzy bi-ideals in Semigroups, Commentarii Mathematici Universitatis Sancti Pauli, 28 (1979), 17-21.

10.
N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems, 5 (1981), 203-215. crossref(new window)

11.
J.N. Mordeson, D.S. Malik and N. Kuroki, Fuzzy semigroups, Studies in Fuzziness and Soft Computing, Springer-Verlag Berlin, 131 (2003).

12.
J.N. Mordeson and D.S. Malik, FUZZY AUTOMATA AND LANGUAGES, THEORY AND APPLICATIONS, Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton, (2002).

13.
Y.B. Jun and M.S. Kang, Fuzzification of generalized tersaki filters in tersaki algebras, Comp. Math. App., 61 (2011), 1-7. crossref(new window)

14.
R. Ameri and T. Nozeri, Fuzzy hyperalgebras, Comp. Math. App., 61 (2011), 149-154. crossref(new window)

15.
B. Davvaz, J. Jhan and Y. Yin, Fuzzy Hv-ideals in Γ-Hv-rings, Comp. Math. App., 61 (2011), 690-698. crossref(new window)

16.
B. Davvaz, J. Zhan and K.H. Kim, Fuzzy Γ-hypernear-rings, Comp. Math. App., 59 (2010), 2846-2853. crossref(new window)

17.
B. Davvaz, Fuzzy krasner (m, n)-hyperrings, Comp. Math. App., 59 (2010), 3879-3891. crossref(new window)

18.
K. Sun, X. Yuan and H. Li, Fuzzy hypergraphs on fuzzy relations, Comp. Math. App., 60 (2010), 610-622. crossref(new window)

19.
P.M. Pu and M. liu, Fuzzy topology I: nieghbourhood structure of a fuzzy point and moore- smith convergence, J. Math. Anl. Appl. 76 (1980), 571-599. crossref(new window)

20.
V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci. 158 (2004), 277-288. crossref(new window)

21.
S.K. Bhakat and P. Das, (Є,Є ∨q)-fuzzy subgroup, Fuzzy Sets and Systems, 80 (1996), 359-368. crossref(new window)

22.
O. Kazanci and S. Yamak, Generalized fuzzy bi-ideal of semigroups, Soft. Comput., 12 (2008), 1119-1124. crossref(new window)

23.
Y.B. Jun and S.Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci., 176 (2006), 3079-3093. crossref(new window)

24.
M. Shabir, Y.B. Jun and Y. Nawaz, Characterizations of regular semigroups by (α, β)-fuzzy ideals, Comp. Math. App., 59 (2010), 161-175. crossref(new window)

25.
M. Shabir, Y. Nawaz and M. Ali, Characterizations of Semigroups by (Є,Є ∨q)-fuzzy ideals, World Applied Sciences Journal, 13 (2011), 805-819.

26.
M. Shabir, Y.B. Jun and Y. Nawaz, Semigroups characterized by (Є,Є ∨qk)-fuzzy ideals, Comp. Math. App., 60 (2010), 1473-1493. crossref(new window)

27.
M. Shabir and T. Mehmood, Characterizations of hemirings by (Є,Є ∨qk)-fuzzy ideals, Comp. Math. App., 61 (2011), 1059-1078. crossref(new window)

28.
M. Aslam, S. Abdullah and N. Amin, Characterization of gamma LA-semigroups by gen- eralized fuzzy gamma ideals, Int. J.Math. Statistics, 12 (2012), 29-50.

29.
K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96. crossref(new window)

30.
K.T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (1994), 137-142. crossref(new window)

31.
K.T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31 (1989), 343-349. crossref(new window)

32.
R. Biswas, it Intuitionistic fuzzy subgroups, Mathematical Fortum, 10 (1989), 37-46.

33.
K.H. Kim and Y.B. Jun, Intuitionistic fuzzy ideals in semigroups, Indian J. pure Appl. Math., 33 (2002), 443-449.

34.
K.H. Kim and J.G. Lee, On intuitionistic fuzzy bi-ideals of semigroups, Turk. J. Math. 29 (2005), 201-210.

35.
K.H. Kim and Y.B. Jun, Intuitionistic fuzzy interior ideals of semigroups, Int. J. Math. Math. Anal., 27 (2001), 261-267. crossref(new window)

36.
D. Coker and M. Demirci, On intuitionistic fuzzy points , Notes IVIFS, 1 (1995), 79-84.

37.
Y.B. Jun, On (Φ, Ψ)-intuitionistic Fuzzy Subgroups, KYUNGPOOK Math. J., 45 (2005), 87-94.

38.
S. Abdullah and M. Aslam, (Φ, Ψ)-intuitionistic fuzzy ideals in semigroups, Italian J. Pure Appl. Math., 32 (In press).

39.
S. Abdullah, B. davvaz and M. Aslam, (α, β)-intuitionistic fuzzy ideals of hemirings, Computer and Mathematics with Applications, 62 (2011), 3077-3090. crossref(new window)

40.
J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.

41.
M. Aslam and S. Abdullah, Direct product of intuitionistic fuzzy sets in LA-semigroups-, Italian J. Pure and Appl. Math., 33( In press).

42.
L.A. Zadeh, The concept of a lingusistic variable and its application to approximate reasoning, Information Sciences, 8 (1975), 199-249. crossref(new window)

43.
M. Shabir and I.A. Khan, Interval-valued fuzzy ideals generated by an interval valued fuzzy subset in ordered semigroups, Mathware Soft Computin, 15 (2008), 263-272.

44.
A. Narayanam and T. Manikantan, Interval-valued fuzzy ideals generated by an interval valued fuzzy subset in semigroups, J. App. Math. Computing, 20 (2006), 455-464. crossref(new window)