JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TRIPLE AND FIFTH PRODUCT OF DIVISOR FUNCTIONS AND TREE MODEL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TRIPLE AND FIFTH PRODUCT OF DIVISOR FUNCTIONS AND TREE MODEL
KIM, DAEYEOUL; CHEONG, CHEOLJO; PARK, HWASIN;
 
 Abstract
It is known that certain convolution sums can be expressed as a combination of divisor functions and Bernoulli formula. In this article, we consider relationship between fifth-order combinatoric convolution sums of divisor functions and Bernoulli polynomials. As applications of these identities, we give a concrete interpretation in terms of the procedural modeling method.
 Keywords
Bernoulli polynomial;divisor functions;convolu-tion sum;
 Language
English
 Cited by
 References
1.
B. C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989.

2.
M. Besge, Extrait d'une lettre de M. Besge à M. Liouville, J. Math. Pures Appl. 7 (1862), 256.

3.
J.W.L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.

4.
H. Hahn, Convolution sums of some functions on divisors, Rocky Mt. J. Math. 37 (2007), 1593-1622. crossref(new window)

5.
J.G. Huard, Z.M. Ou, B.K. Spearman and K.S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, Number theory for the millennium II (2002), 229-274.

6.
D. Kim and A. Bayad, Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory and Appl. 81 (2013).

7.
D. Kim, A. Bayad, Nazli Yildiz Ikikardes, Certain Combinatoric convolution sums and their relations to Bernoulli and Euler Polynomials, J. Korean Math. Soc. 52 (2015), 537-565. crossref(new window)

8.
D. Kim and Y.K. Park, Bernoulli identities and combinatoric convolution sums with odd divisor functions, Abstract and Applied Analysis 2014 (2014), Article ID 890973, 8 pages.

9.
D. Kim and Y.K. Park, Certain combinatoric convolution sums involving divisor functions product formula, Taiwan J. Math. 18 (2014), 973-988.

10.
J. Kim, D. Kim and H. Cho, Procedural Modeling of Trees based on Convolution Sums of Divisor Functions for Real-time Virtual Ecosystems, Comp. Anim. Virtual Worlds 24 (2013), 237-246 crossref(new window)

11.
J. Kim, D. Kim, H. Cho, Tree Growth Model Design for Realistic Game Landscape Pro-duction(Korean), Journal of Korea Game Society 13 (2013), 49-58. crossref(new window)

12.
G. Melfi, On some modular identities, Number Theory (Eger., 1996), 371-382, De Gruyter, Berlin, 1998.

13.
K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, 2011.