JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHROMATIC NUMBER OF BIPOLAR FUZZY GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHROMATIC NUMBER OF BIPOLAR FUZZY GRAPHS
TAHMASBPOUR, A.; BORZOOEI, R.A.;
 
 Abstract
In this paper, two different approaches to chromatic number of a bipolar fuzzy graph are introduced. The first approach is based on the α-cuts of a bipolar fuzzy graph and the second approach is based on the definition of Eslahchi and Onagh for chromatic number of a fuzzy graph. Finally, the bipolar fuzzy vertex chromatic number and the edge chromatic number of a complete bipolar fuzzy graph, characterized.
 Keywords
Bipolar fuzzy set;bipolar fuzzy vertex chromatic number;bipolar fuzzy edge chromatic number;
 Language
English
 Cited by
 References
1.
M. Akram, Bipolar fuzzy graphs, Information Sciences, 181 (2011), 5548-5564. crossref(new window)

2.
M. Ananthanarayanan and S. Lavanya, Fuzzy graph coloring using alpha cuts, International Journal of Engineering and Applied Sciences, 4 (2014), 23-28.

3.
P. Bartlett, The chromatic number, Introduction to Graph Theory, Mathcamp, (2011), 1-5.

4.
A. Day and A. Pal, Vertex coloring of a fuzzy graph using alpha cut, IJMIE, 2 (2012), 340-352.

5.
R. Diestel, Graph theory, Springer, New York, NY, USA, 173 (1997).

6.
C. Eslahchi and B.N. Onagh, Vertex-strength of fuzzy graphs, International Journal of Mathematics and Mathematical Sciences, Article ID 43614, 2006 (2006), 1-9. crossref(new window)

7.
S. Firouzian and M. Nouri Jouybari, Coloring fuzzy graphs and traffic light problem, The Journal of Mathematics and Computer Science, 2 (2011), 431-435.

8.
A. Kishore and M.S. Sunitha, Chromatic number of fuzzy graphs, Annals of Fuzzy Mathematices Informatics, 7 (2013), 543-551.

9.
A. Kishore and M.S. Sunitha, Strong chromatic number of fuzzy graphs, Annals of pure and applied mathematics, 7 (2014), 52-60.

10.
M. Pal and H. Rashmanlou, Irregular interval-valued fuzzy graphs, Annals of Pure and Applied Mathematics, 3 (2013), 56-66.

11.
B. Poornima and V. Ramaswamy, Total coloring of a fuzzy graph, International Journal of Computational and Applied Mathematics, 5 (2010), 11-22.

12.
H. Rashmanlou, S. Samanta, M. Pal and R.A. Borzooei, A study on bipolar fuzzy graphs, Journal of Intelligent and Fuzzy Systems, 28 (2015), 571-580.

13.
H. Rashmanlou and M. Pal, Antipodal interval-valued fuzzy graphs, International Journal of Applications of Fuzzy Sets and Artificial Intelligence, 3 (2013), 107-130.

14.
H. Rashmanlou and M. Pal, Balanced interval-valued fuzzy graph, Journal of Physical Sciences, 17 (2013), 43-57.

15.
H. Rashmanlou and M. Pal, Some properties of highly irregular interval-valued fuzzy graphs, World Applied Sciences Journal, 27 (2013), 1756-1773.

16.
A. Rosenfeld, Fuzzy graphs, Fuzzy sets and their applications, Academic Press, New York, (1975), 77-95.

17.
S. Swaminathan, Fuzzy graph applications of job allocation, International Journal of Engineering and Innovative Technology, 2 (2012), 7-10.

18.
S. Samanta and M. Pal, Irregular bipolar fuzzy graphs, International Journal of Applications of Fuzzy Sets, 2 (2012), 91-102. crossref(new window)

19.
A.A. Talebi and H. Rashmanlou, Isomorphism on interval-valued fuzzy graphs, Annals of Fuzzy Mathematics and Informatics, 6 (2013), 47-58.

20.
L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. crossref(new window)

21.
W.R. Zhang, Bipolar fuzzy sets and relations: A computational frame work for cognitive modelling and multiagent decision analysis, Proceeding of IEEE Conf., 305-309.

22.
W.R. Zhang, Bipolar fuzzy sets, Proceeding of Fuzzy-IEEE, (1998), 835-840.