JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXPONENTIALLY FITTED INTERPOLATION FORMULAS DEPENDING ON TWO FREQUENCIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXPONENTIALLY FITTED INTERPOLATION FORMULAS DEPENDING ON TWO FREQUENCIES
KIM, KYUNG JOONG;
 
 Abstract
Our goal is to construct a two-frequency-dependent formula which interpolates a product f of two functions with different frequencies at some N points. In the beginning, it is not clear to us that the formula satisfies $I_N
 Keywords
Interpolation;exponentially fitted;
 Language
English
 Cited by
 References
1.
R.L. Burden and J.D. Fairs, Numerical Analysis, Brooks/Cole, 2001.

2.
J.P. Coleman and L.Gr. Ixaru, Truncation errors in exponential fitting for oscillatory problems, Siam J. Numer. Anal. 44 (2006), 1441-1465. crossref(new window)

3.
L.Gr. Ixaru, Numerical Methods for Differential Equations and Applications, Reidel, Dordrecht, Boston, Lancaster, 1984.

4.
L.Gr. Ixaru, Operations on oscillatory functions, Comput. Phys. Commun. 105 (1997), 1-19. crossref(new window)

5.
L.Gr. Ixaru and G.V. Berghe, Exponential Fitting, Kluwer Academic Publishers, Dordrecht, 2004.

6.
L.Gr. Ixaru, H. De Meyer, G. Vanden Berghe and M. Van Daele, A regularization procedure for Σni=1 fk(zj)xi = g(zj), (j = 1, 2, ..., n), Numer. Linear Algebra Appl. 3 (1996), 81-90. crossref(new window)

7.
K.J. Kim, Error analysis for frequency-dependent interpolation formulas using first derivatives, Appl. Math. Comput. 217 (2011), 7703-7717.

8.
K.J. Kim, Exponentially fitted interpolation formulas involving first and higher-order derivative, J. Appl. Math. & Informatics 31 (2013), 677-693. crossref(new window)

9.
K.J. Kim and S.H. Choi, Frequency-dependent interpolation rules using first derivatives for oscillatory functions, J. Comput. Appl. Math. 205 (2007), 149-160. crossref(new window)

10.
K.J. Kim and R. Cools, Extended exponentially fitted interpolation formulas for oscillatory functions, Appl. Math. Comput. 224 (2013), 178-195.

11.
MATLAB, Language of Technical Computing, The Mathworks Inc.