JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS
KHAN, N.U.; USMAN, T.; GHAYASUDDIN, M.;
 
 Abstract
The object of the present paper is to establish two interesting unified integral formulas involving Multiple (multiindex) Mittag-Leffler functions, which is expressed in terms of Wright hypergeometric function. Some deduction from these results are also considered.
 Keywords
Multiple (multiindex) Mittag-Leffler Function;Wright Hypergeometric Function and Integrals;
 Language
English
 Cited by
 References
1.
C. Fox, The asymptotic expansion of generalized hypergeometric functions, Proc. London Math. Soc. S2-27 (1928), 389-400. crossref(new window)

2.
J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc. 51 (2014), 995-1003. crossref(new window)

3.
J. Choi and P. Agarwal, Certain unified integrals involving a product of Bessel functions of first kind, Honam Mathematical J. 35 (2013), 667-677. crossref(new window)

4.
J. Choi and P. Agarwal, Certain Unified Integrals Associated with Bessel Functions, Boundary Value Problems, 2013 (2013:95), 9 pp. . crossref(new window)

5.
J. Choi, A. Hasnove, H.M. Srivastava and M. Turaev, Integral representations for Srivastava’s triple hypergeometric functions, Taiwanese J. Math. 15 (2011), 2751-2762.

6.
F. Oberhettinger, Tables of Mellin Transforms, Springer, New York, 1974.

7.
P. Agarwal, S. Jain, S. Agarwal and M. Nagpal, On a new class of integrals involving Bessel functions of the first kind, Communication in Numerical Analysis, 2014 (2014), 1-7. crossref(new window)

8.
E.D. Rainville, Special functions, The Macmillan Company, New York, 2013.

9.
H.M. Srivastava and H.L. Manocha, A Treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and sons, New York, 1984.

10.
H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1985.

11.
Virgina S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math.,118 (2000) 241-259. crossref(new window)

12.
E.M. Wright, The asymptotic expansion of the generalized hypergeometric functions, J. London Math. Soc. 10 (1935), 286-293.

13.
E.M. Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London, A238, (1940), 423-451. crossref(new window)

14.
E.M. Wright, The asymptotic expansion of the generalized hypergeometric function II, Proc. Lond. Math. Soc. S2-46 (1940), 389-408. crossref(new window)

15.
Y.A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas, CRC Press, Taylor and Francis Group, Boca Raton, London, and New York, 2008.