JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BOUNDS ON THE HYPER-ZAGREB INDEX
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BOUNDS ON THE HYPER-ZAGREB INDEX
FALAHATI-NEZHAD, FARZANEH; AZARI, MAHDIEH;
 
 Abstract
The hyper-Zagreb index HM(G) of a simple graph G is defined as the sum of the terms (du+dv)2 over all edges uv of G, where du denotes the degree of the vertex u of G. In this paper, we present several upper and lower bounds on the hyper-Zagreb index in terms of some molecular structural parameters and relate this index to various well-known molecular descriptors.
 Keywords
Molecular descriptor;hyper-Zagreb index;vertex degree;
 Language
English
 Cited by
 References
1.
A.R. Ashrafi, T. Došlić and A. Hamzeh, Extremal graphs with respect to the Zagreb coindices, MATCH Commun. Math. Comput. Chem. 65 (2011), 85-92.

2.
M. Azari, Sharp lower bounds on the Narumi-Katayama index of graph operations, Appl. Math. Comput. 239 (2014), 409-421. crossref(new window)

3.
M. Azari and A. Iranmanesh, Some inequalities for the multiplicative sum Zagreb index of graph operations, J. Math. Inequal. 9 (2015), 727-738. crossref(new window)

4.
J.B. Diaz and F.T. Metcalf, Stronger forms of a class of inequalities of G. Pólya-G. Szegö, and L. V. Kantorovich, Bull. Amer. Math. Soc. 69 (1963), 415-418. crossref(new window)

5.
M.V. Diudea, QSPR/QSAR studies by molecular descriptors, NOVA, New York, 2001.

6.
T. Došlić and T. Réti, Novel degree-based molecular descriptors with increased discriminating power, Acta Polytech. Hung. 9 (2012), 17-30.

7.
M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 217-230.

8.
S. Fajtlowicz, On conjectures on Graffiti-II, Congr. Numer. 60 (1987), 187-197.

9.
F. Falahati-Nezhad, A. Iranmanesh, A. Tehranian and M. Azari, Comparing the second multiplicative Zagreb coindex with some graph invariants, Trans. Comb. 3 (2014), 31-41.

10.
F. Falahati-Nezhad, A. Iranmanesh, A. Tehranian and M. Azari, Strict lower bounds on the multiplicative Zagreb indices of graph operations, Ars Combin. 117 (2014), 399-409.

11.
F. Falahati-Nezhad, A. Iranmanesh, A. Tehranian and M. Azari, Upper bounds on the second multiplicative Zagreb coindex, Util. Math. 96 (2015), 79-88.

12.
I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.

13.
I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538. crossref(new window)

14.
A. Ilić, G. Yu and L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590-600. crossref(new window)

15.
G. Pólya and G. Szegö, Problems and Theorems in Analysis, Series, Integral Calculus, Theory of Functions, Springer-Verlag, Berlin, 1972.

16.
M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609-6615. crossref(new window)

17.
V. Sharma, R. Goswami and A.K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure–property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997), 273-282. crossref(new window)

18.
G.H. Shirdel, H. Rezapour and A.M. Sayadi, The hyper-Zagreb index of graph operations, Iranian J. Math. Chem. 4 (2013), 213-220.

19.
M. Tavakoli, F. Rahbarnia and A.R. Ashrafi, Some new results on irregularity of graphs, J. Appl. Math. Inform. 32 (2014), 675-685. crossref(new window)

20.
D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009), 1369-1376. crossref(new window)

21.
D. Vukičević and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57 (2010), 524-538.