JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Stator Core with Slits in Transverse Flux Rotary Machine to Reduce Eddy Current Loss
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 17, Issue 1,  2012, pp.51-55
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2012.17.1.051
 Title & Authors
Stator Core with Slits in Transverse Flux Rotary Machine to Reduce Eddy Current Loss
Lee, Ji-Young; Koo, Dae-Hyun; Kang, Do-Hyun; Hong, Jung-Pyo;
  PDF(new window)
 Abstract
This paper presents an eddy current loss analysis for a transverse flux rotary machine (TFRM) with laminated stator cores, which consist of inner and outer cores whose laminated directions are perpendicular to each other. Although the TFRM is laminated to reduce eddy current losses, it still exhibits rapidly increasing core losses as the frequency increases. To solve this problem, slits are introduced to the stator outer core. 3-dimensional finite element analysis (3D FEA) based on the T- formulation is used to solve the eddy-current problem for a various numbers of slits in the nonlinear lamination core. The effects of the slits are confirmed using experiment data and 3D FEA results.
 Keywords
eddy current;finite element analysis;lamination core;slit;
 Language
English
 Cited by
1.
Comparison of Transverse Flux Rotary Machines with Different Stator Core Topologies,;;;;

Journal of Magnetics, 2014. vol.19. 2, pp.146-150 crossref(new window)
2.
Analysis of Mechanical Fixation Made of Aluminum Alloy in an Axial Flux Permanent Magnet Machine,;;;

Journal of Magnetics, 2014. vol.19. 3, pp.309-313 crossref(new window)
1.
A Device for the Study of Electrical Steel Losses in Stator Lamination Stacks, IEEE Transactions on Industrial Electronics, 2014, 61, 5, 2217  crossref(new windwow)
2.
Comparison of Transverse Flux Rotary Machines with Different Stator Core Topologies, Journal of Magnetics, 2014, 19, 2, 146  crossref(new windwow)
3.
Analysis of Mechanical Fixation Made of Aluminum Alloy in an Axial Flux Permanent Magnet Machine, Journal of Magnetics, 2014, 19, 3, 309  crossref(new windwow)
 References
1.
B. C. Mecrow and A. G. Jack, IEEE Trans. Magn. 28, 1122 (1992). crossref(new window)

2.
K. Yamazaki, S. Tada, H. Mogi, Y. Mishima, C. Kaido, K. Takahashi, K. Ide, K. Hattori, and A. Nakahara, IEEE Trans. Magn. 44, 1502 (2008). crossref(new window)

3.
R. Lin, A. Haavisto, and A. Arkkio, IEEE Trans. Magn. 46, 3933 (2010). crossref(new window)

4.
Y. Gao, K. Muramatsu, K. Shida, K. Fujiwara, S. Fukuchi, and T. Takahata, IEEE Trans. Magn. 45, 1044 (2009). crossref(new window)

5.
S. Nogawa, M. Kuwata, D. Miyagi, T. Hayashi, H. Tounai, T. Nakau, and N. Takahashi, IEEE Trans. Magn. 41, 2024 (2005). crossref(new window)

6.
Y. Kamiya and T. Onuki, IEEE Trans. Magn. 32, 741 (1996). crossref(new window)

7.
J. Y. Lee, D. K. Hong, B. C. Woo, and J. P. Hong, Digests of the 2010 14th Biennial IEEE Conf. on Electromagnetic Field Computation, Chicago (2010).

8.
P. Zhou, Z. Badics, D. Lin, and Z. J. Cendes, IEEE Trans. Magn. 44, 718 (2008). crossref(new window)

9.
D. Lin, P. Zhou, and Q. M. Chen, IEEE Vehicle Power and Propulsion Conf. (VPPC), Harbin, China (2008).

10.
J. Y. Lee, S. R. Moon, D. H. Kang, and J. P. Hong, Proc. of the 17th Conf. on the Computation of Electromagnetic fields (Compumag), Florianopolis, Brazil, 608 (2009).

11.
Erich Schmidt, IEEE Trans. Magn. 41, 836 (2005). crossref(new window)

12.
K. Yamazaki, Y. Fukushima, and M. Sato, IEEE Trans. Ind. Appl. 45, 1334 (2009). crossref(new window)

13.
J. Y. Lee, S. R. Moon, D. H. Koo, D. H. Kang, G. H. Lee, and J. P. Hong, J. Electrical Engineering & Technology 6, 350 (2011). crossref(new window)