JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Enhanced Field Emission Behavior from Boron-Doped Double-walled Carbon Nanotubes Synthesized by Catalytic Chemical Vapor Deposition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 17, Issue 1,  2012, pp.9-12
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2012.17.1.009
 Title & Authors
Enhanced Field Emission Behavior from Boron-Doped Double-walled Carbon Nanotubes Synthesized by Catalytic Chemical Vapor Deposition
Kang, J.H.; Jang, H.C.; Choi, J.M.; Lyu, S.C.; Sok, J.H.;
  PDF(new window)
 Abstract
Attempts to dope carbon nanotube (CNT) with impurities in order to control the electronic properties of the CNT is a natural course of action. Boron is known to improve both the structural and electronic properties. In this report, we study the field emission properties of Boron-doped double-walled CNT (DWCNT). Boron-doped DWCNT films were fabricated by catalytic decomposition of tetrahydrofuran and triisopropyl borate over a Fe-Mo/MgO catalyst at . We measured the field emission current by varying the doping amount of Boron from 0.8 to 1.8 wt%. As the amount of doped boron in the DWCNT increases, the turn-on-field of the DWCNT decreases drastically from 6 V/ to 2 V/. The current density of undoped CNT is 0.6 mA/ at 9 V, but a doped-DWCNT sample with 1.8 wt% achieved the same current density only at only 3.8 V. This shows that boron doped DWCNTs are potentially useful in low voltage operative field emitting device such as large area flat panel displays.
 Keywords
DWCNT;field emission;current density;boron doping;
 Language
English
 Cited by
 References
1.
W. A. Heer, A. Chatelain, and D. Ugarte, Science 270, 5379 (1995).

2.
X. Wang, X. Li, L. Zhaning, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science 324, 5928 (2009).

3.
R. Saito, M. Fujia, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 220419 (1992).

4.
N. Hamada, S. Sawda, and A. Oshiyama, Appl. Phys. Lett. 68, 1579 (1992). crossref(new window)

5.
M. Endo, T. Hayashi, S. H. Hong, T. Enoki, and M. S. Dresselhaus, J. Appl. Phys. 90, 5670 (2001). crossref(new window)

6.
L. R. Radovic, M. Karra, K. Skokova, and P. A. Thrower, Carbon 36, 1841 (1998). crossref(new window)

7.
K. Liu, P. Avouris, R. Martel, and W. K. Hsu, Phys. Rev. B. 63, 1611404 (2001).

8.
K. Y. Chun, H. S. Lee, and C. J. Lee, Carbon 47, 169 (2009). crossref(new window)

9.
C. J. Lee, S. C. Lyu, H. W. Kim, J. H. Lee, and K. I. Cho, Chem. Phys. Lett. 359, 115 (2002). crossref(new window)

10.
J. W. Jang, C. E. Lee, S. C. Lyu, and T. J. Lee, Appl. Phys. Lett. 84(15), 2877 (2004). crossref(new window)

11.
Ph. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, and M. Ruhle, Chem. Phys. Lett. 260, 465 (1996). crossref(new window)

12.
K. McGuire, N. Gohard, P. L. Gai, M. S. Dresselhaus, G. Sumanasekera, and A. M. Rao, Carbon 43, 219 (2005). crossref(new window)

13.
C. F. Chen. C. L. Tsai, and C. L. Lin, Diam. Relat. Mater. 12, 1500 (2003). crossref(new window)

14.
Paola Ayala, W. Plank, A. Gruneis, E. I. Kauppinen, M. H. Rummeli, H. Kuzmany, and T. Pichler, J. Mater. Chem. 18, 5676 (2008). crossref(new window)

15.
X. Blase, J.-C. Charlier, A. D. Vita, and R. Car, Phys. Rev. Lett. 83, 5078 (1999). crossref(new window)

16.
A. Agarwal, H. Yinnon, D. R. Uhlmann, R. T. Pepper, and C. R. Desper, J. Mater. Sci. 21, 3455 (1986). crossref(new window)

17.
S. C. Lyu, J. H. Han, K. W. Shin, and J. H. Sok, Carbon 49, 1532 (2011). crossref(new window)

18.
R. B. Rakhi, X. Lim, X. Gao, Y, Yang, A. T. S. Wee, K. Sethupathi, S. Ramaprabhu, and C. H. Sow, Appl. Phys. A 98, 195 (2010). crossref(new window)

19.
E. S. Jang, J. C. Goak, H. S. Lee, J. H. Han, C. S. Lee, J. H. Sok, Y. H. Seo, K. S. Park, and N. S. Lee, Appl. Surf. Sci. 256, 6838 (2010). crossref(new window)

20.
SeungChul Lyu, Dami Jung, KiTae Ahn, Hansung Lee, Naesung Lee, Yunsun Park, and Junghyun Sok, Kor. J. Met. Mater. 48, 355 (2009).

21.
B. Bittova, J. Poltiverova Vejpravova, M. Kalbac, S. Burianova, A. Mantlikova, S. Danis, and S. Doyle, J. Phys. Chem. C 115, 17303 (2011). crossref(new window)

22.
Yuji Fujiwara, Hitoshi Takegawa, Hideki Sato, Kohji Maeda, Yahachi Saito, Tadashi Kobayashi, and Shigeru Shiomi. J. Appl. Phys. 95, 7119 (2004).

23.
KiTae Ahn, HyunChul Jang, SeungChul Lyu, Hansung Lee, Naesung Lee, Moonsup Han, Yunsun Park, Wanshick Hong, Kyoungwan Park, and Junghyun Sok, Kor. J. Met. Mater. 49, 79 (2010). crossref(new window)

24.
R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A. 119, 173 (2005).

25.
J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupensinghe, W. K. Hsu, N. Gerbert, H. Terrones, and G. A. J. Amaratunga, Nano Letters 2, 1191 (2002). crossref(new window)

26.
Hyo-Shin Ahn, Kwang-Ryeol Lee, Doh-Yeon Kim, and Sengwu Han, Appl. Phys. Lett. 88, 093122 (2006). crossref(new window)