JOURNAL BROWSE
Search
Advanced SearchSearch Tips
First-principle Study for AlxGa1-xP and Mn-doped AlGaP2 Electronic Properties
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 20, Issue 4,  2015, pp.331-335
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2015.20.4.331
 Title & Authors
First-principle Study for AlxGa1-xP and Mn-doped AlGaP2 Electronic Properties
Kang, Byung-Sub; Song, Kie-Moon;
  PDF(new window)
 Abstract
The ferromagnetic and electronic structure for the and Mn-doped was studied by using the self-consistent full-potential linear muffin-tin orbital method. The lattice parameters of un-doped (x = 0.25, 0.5, and 0.75) were optimized. The band-structure and the density of states of Mn-doped with or without the vacancy were investigated in detail. The P-3p states at the Fermi level dominate rather than the other states. Thus a strong interaction between the Mn-3d and P-3p states is formed. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the (Mn-3d)-(P-3p)-(Mn-3d) hybridization, which is attributed by the partially filled P-3p bands. The holes are mediated with keeping their 3d-characters, therefore the ferromagnetic state is stabilized by this double-exchange mechanism.
 Keywords
chalcopyrite and luzonite;ferromagnetic half-metallicity;first-principle;
 Language
English
 Cited by
 References
1.
T. Fukumura, Zhengwu Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999). crossref(new window)

2.
K. Sato and H. Katayama-Yoshida, Phys. Stat. Sol. (b) 229, 673 (2002). crossref(new window)

3.
Priya Mahadevan and Alex Zunger, Phys. Rev. B69, 115211 (2004). crossref(new window)

4.
X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, and C. Stampfl, Phys. Rev. B75, 155205 (2007). crossref(new window)

5.
S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, Mater. Sci. and Engin. R 40, 137 (2003). crossref(new window)

6.
J. Choi, S. Choi, S. C. Hong, S. Cho, M. H. Sohn, Y. Park, K. W. Lee, H. Y. Park, J. H. Song, and J. B. Ketterson, J. of Korean Phys. Soc. 47, S497 (2005).

7.
S. Choi, G.-B. Cha, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, S.-Y. Jeong, and G.-C. Yi, Solid State Comm. 122, 165 (2002). crossref(new window)

8.
Sunglae Cho, Sungyoul Choi, Gi-beom Cha, Soon Cheol Hong, Yunki Kim, Yu-Jun Zhao, Arthur J. Freeman, John B. Ketterson, B. J. Kim, Y. C. Kim, and Byung-Chun Choi, Phy. Rev. Lett. 88, 257203-1 (2002). crossref(new window)

9.
S. Y. Savrasov, Phys. Rev. B54, 16470 (1996). crossref(new window)

10.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). crossref(new window)

11.
C. Kittel, Introduction to Solid State Physics Seventh ed., John Wiley & Sons (1996).

12.
Nadir Bouarissa, Materials Chemistry and Physics, 124, 336 (2010). crossref(new window)

13.
S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, Mater. Sci. and Eng. R 40, 137 (2003). crossref(new window)

14.
J. H. Park, S. K. Kwon, and B. I. Min, Physica B 281&282, 703 (2000).