JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 20, Issue 4,  2015, pp.347-352
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2015.20.4.347
 Title & Authors
Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites
Chen, Lei; Luo, Yulin;
  PDF(new window)
 Abstract
The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient and the elastic compliance of magnetostrictive material, and for Terfenol-D are inherently nonlinear and dependent on , leading to the influence of on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor dependences on results in the differences between the low-frequency and resonant ME voltage coefficient with . In terms of effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and dependence on c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on are mainly influenced by the nonlinear effect of magnetostrictive material.
 Keywords
composite materials;mechanical quality factor;bias magnetic field;Magnetoelectric (ME);
 Language
English
 Cited by
 References
1.
M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).

2.
J. Ryu, S. Priya, A. V. Carazo, and K. Uchino, J. Am. Ceram. Soc. 84, 2905 (2001). crossref(new window)

3.
K. Prabahar, Josephine Mirunalini, N. Shara Sowmya, J. Arout Chelvane, M. Mahendiran, S. V. Kamat, and A. Srinivas, Physica B 448, 336 (2014). crossref(new window)

4.
S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50, 1253 (2003). crossref(new window)

5.
C. W. Nan, M. Li, and J. H. Huang, Phys. Rev. B 63, 144415 (2001). crossref(new window)

6.
Y. X. Liu, J. G. Wan, J. M. Liu, and C. W. Nan, J. Appl. Phys. 94, 5118 (2003). crossref(new window)

7.
H. M. Zhou, L. M. Xuan, C. Li, and J. Wei, J. Magn. Magn. Mater. 323, 2802 (2011). crossref(new window)

8.
C. W. Nan, M. Li, X. Feng, and S. Yu, Appl. Phys. Lett. 78, 2527 (2001). crossref(new window)

9.
R. Belouadah, D. Guyomar, B. Guiffard, and J. W. Zhang, Physica B 406, 2821 (2011). crossref(new window)

10.
S. Priya, R. Islam, S. Dong, and D. Viehland, J. Electroceram. 19, 147 (2007).

11.
Y. Yao, Y. Hou, S. Dong, X. Huang, Q. Yu, and X. Li, J. Alloys Compd. 509, 6920 (2011). crossref(new window)

12.
X. J. Zheng and X. E. Liu, J. Appl. Phys. 97, 053901 (2005). crossref(new window)

13.
M. B. Moffet, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughlin, J. Acoust. Soc. Am. 89, 1448 (1991). crossref(new window)

14.
K. B. Hathaway and A. E. Clark, MRS Bull. 18, 34 (1993). crossref(new window)

15.
M. E. H. Benbouzid, G. Reyne, and G. Meunier, IEEE Trans. Magn. 31, 1821 (1995). crossref(new window)