Advanced SearchSearch Tips
Relaxor Behaviors in xBaTiO3-(1-x)CoFe2O4 Materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 20, Issue 4,  2015, pp.353-359
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2015.20.4.353
 Title & Authors
Relaxor Behaviors in xBaTiO3-(1-x)CoFe2O4 Materials
Dung, Cao Thi My; Thi, Nhu Hoa Tran; Ta, Kieu Hanh Thi; Tran, Vinh Cao; Nguyen, Bao Thu Le; Le, Van Hieu; Do, Phuong Anh; Dang, Anh Tuan; Ju, Heongkyu; Phan, Bach Thang;
  PDF(new window)
Dielectric properties of composite materials have been investigated. Dielectric properties of , and samples show frequency dependence, which is classified as relaxor behavior with different relaxing degree. The relaxor behaviors were described using the modified Curier-Weiss and Vogel-Fulcher laws. Among three above samples, the sample has highest relaxing degree. Photoluminescence spectral indicated defects, which might in turn control relaxing degree.
xBaTiO3-(1-x)CoFe2O4;dielectric properties;relaxing degree;modified Curie-Weiss law;Vogel-Fulcher law;
 Cited by
Tanmoy Maiti, PhD thesis, The Pennsylvania State University, USA (2007).

L. Mitoseriu, D. Marre, A. S. Siri, A. Stancu, C. E. Fedor, and P. Nanni, J. Optoelectro, Adv. Mater. 6, 723 (2004).

A. A. Bokov and Z.-G. Ye, Phys. Rev. B 74, 132102 (2006). crossref(new window)

J. Miao, X. G. Xu, Y. Jiang, and B. R. Zhao, Appl. Phys. Lett. 95, 132905 (2009). crossref(new window)

L. Yan, J. F. Li, C. Suchicital, and D. Viehland, Appl. Phys. Lett. 89, 132913 (2006). crossref(new window)

A. Kumar, I. Rivera, R. S. Katiyar, and J. F. Scott, Appl. Phys. Lett. 92, 132913 (2008). crossref(new window)

W. Peng, N. Lemee, J.-L. Dellis, V. V. Shvartsman, P. Borisov, W. Kleemann, Z. Trontelj, J. Holc, M. Kosec, R. Blinc, and M. G. Karkut, Appl. Phys. Lett. 95, 132507 (2009). crossref(new window)

A. Levstik, V. Bobnar, C. Filipic, J. Holc, M. Kosec, R. Blinc, Z. Trontelj, and Z. Jaglicic, Appl. Phys. Lett. 91, 012905 (2007). crossref(new window)

Z. Hu, T. Nan, X. Wang, M. Staruch, Y. Gao, P. Finkel, and N. X. Sun, Appl. Phys. Lett. 106, 022901 (2015). crossref(new window)

C. E. Ciomaga, R. Calderone, M. T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Stancu, and P. Nanni, J. Optoelec. Adv. Mater. 8, 944 (2006).

S. Q. Ren, L. Q. Weng, S. H. Song, F. Li, J. G. Wan, and M. Seng, J. Mater. Sci. 40, 4375 (2005). crossref(new window)

J. X. Zhang, J. Y. Dai, W. Lu, and H. L. W. Chan, J. Mater. Sci. 44, 5143 (2009). crossref(new window)

G. V. Duong, R. S. Turtelli, and R. Groessinger, J. Magn. Magn. Mater. 322, 1581 (2010). crossref(new window)

H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes- Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661(2004). crossref(new window)

D. Ghosh, H. Han, J. C. Nino, G. Subhash, and J. L. Jones, J. Am. Ceram. Soc. 95, 2504 (2012). crossref(new window)

C. S. Antoniak, D. Schmitz, P. Borisov, F. M. F. D. Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, and W. K. H. Wende, Nat. Com. 4, 1 (2013).

C. X. Li, B. Yang, S. T. Zhang, R. Zhang, Y. Sun, H. J. Zhang, and W. W. Cao, J. Am. Ceram. Soc. 97, 816 (2014). crossref(new window)

S. Haffer, C. Luder, T. Walther, R. Koferstein, S. G. Ebbinghaus, and M. Tiemann, Micro. Meso. Mater. 196, 300 (2014). crossref(new window)

S. Ren, M. Laver, and M. Wuttig, Appl. Phys. Lett. 95, 153504 (2009). crossref(new window)

T. Maiti, R. Guo, and A. S. Bhalla, J. Appl. Phys. 100, 114109 (2006). crossref(new window)

D. Viehland, J. F. Li, S. J. Jang, L. E. Cross, and M. Wuttig, Phys. Rev. B 43, 8316 (1991). crossref(new window)

D. P. Pham, H. T. Nguyen, B. T. Phan, V. D. Hoang, S. Maenosono, and C. V. Tran, Thin Solid Films 583, 201 (2015). crossref(new window)