JOURNAL BROWSE
Search
Advanced SearchSearch Tips
An Asymmetric Rotor Design of Interior Permanent Magnet Synchronous Motor for Improving Torque Performance
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 20, Issue 4,  2015, pp.387-393
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2015.20.4.387
 Title & Authors
An Asymmetric Rotor Design of Interior Permanent Magnet Synchronous Motor for Improving Torque Performance
Yoon, Myung-Hwan; Kim, Doo-Young; Kim, Sung-Il; Hong, Jung-Pyo;
  PDF(new window)
 Abstract
Torque ripple is necessarily generated in interior permanent magnet synchronous motors (IPMSMs) due to the non-sinusoidal distribution of flux density in the air gap and the magnetic reluctance by stator slots. This paper deals with an asymmetric rotor shape to reduce torque ripple which can make sinusoidal flux density distribution in the air gap. Meanwhile the average torque is relatively increased by the asymmetric rotor. Response surface method (RSM) is applied to find the optimum position of the permanent magnets for the IMPSM with improved torque performance. Consequently, an asymmetric structure is the result of RSM and the structure has disadvantage of a mechanical stiffness. Finally, the performance of suggested shape is verified by finite element analysis and structural analysis is conducted for the mechanical stiffness.
 Keywords
average torque;torque ripple;flux distribution;permanent magnet position;rotor core saturation;response surface methodology;
 Language
English
 Cited by
 References
1.
S. A. Evans, IEEE. ICEM, 1 (2010).

2.
L. Fang, S. I. Kim, S. O. Kwon, and J. P. Hong, IEEE. Trans. Magn. 46, 2183 (2010). crossref(new window)

3.
S. M. Hwang, J. B. Eom, Y. H. Jung, and D. W. Lee, IEEE. Trans. Magn. 37, 2806 (2001). crossref(new window)

4.
M. Gulec and M. Aydin, IET Electr. Power Appl. 8, 189 (2014). crossref(new window)

5.
D. Iles-Klumpner, U.S. Patent No. 7, 230 (2007).

6.
S. I. Kim, J. Y. Lee, Y. K. Kim, and J. P. Hong, IEEE. Trans. Magn. 41, 1796 (2005). crossref(new window)

7.
S. I. Kim, Y. K. Kim, G. H. Lee, and J. P. Hong, IEEE. Trans. Magn. 48, 843 (2012). crossref(new window)

8.
K. Wang, Z. Q. Zhu, G. Ombach, and W. Chlebosz, IEEE. ICEM, 397 (2012).

9.
S. I. Kim, G. H. Lee, J. J. Lee, and J. P. Hong, IJAT 11, 277 (2010).

10.
G. H. Lee, W. C. Choi, S. I. Kim, S. O. Kwon, and J. P. Hong, IJAT 11, 291 (2011).

11.
H. Shang, L. Zhao, and T. Wang, IEEE. ICISCE, 1001 (2015).

12.
P. Zheng, W. Ke, Z. Song, Q. Zhao, and J. Bai, Electrical Machines and Systems IEEE. ICEMS, 1 (2011).

13.
K. W. Jeon, T. Y. Lee, Y. J. Kim, and S. Y. Jung, IET. CEM 2014, 1 (2014).

14.
Y. U. Park, J. U. Cho, D. H. Chung, J. Y. So, and D. K Kim, IEEE. ICEM, 1139 (2013).

15.
D. Wnag, X. Wang, and S. Y. Jung, IEEE. Trans. Magn. 49, 2295 (2013). crossref(new window)