Advanced SearchSearch Tips
Modeling of 3-stage Electromagnetic Induction Launcher
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 20, Issue 4,  2015, pp.394-399
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2015.20.4.394
 Title & Authors
Modeling of 3-stage Electromagnetic Induction Launcher
Kwak, Daehwan; Kim, Young Bae; Kim, Jong Soo; Cho, Chuhyun; Yang, Kyung-Seung; Kim, Seong-Ho; Lee, Byung-Ha; An, Sanghyuk; Lee, Young-Hyun; Yoon, Seok Han; Koo, In Su; Baik, Yong Gi; Jin, Yun Sik;
  PDF(new window)
Electromagnetic Induction Launchers (EIL) have been receiving great attention due to their advantages of non-contact between the coils and a projectile. This paper describes the modeling and design of 3-stage EIL to accelerate a copper projectile of 50 kg with 290 mm diameter. Our EIL consists of three independent driving coils and pulsed power modules to generate separate driving currents. To find efficient acceleration conditions, the appropriate shape of the driving coils and the position of the projectile have been calculated by using a finite element analysis (FEA) method. The results showed that the projectile can be accelerated more effectively as the gap between the coils is smaller; a final velocity of 45 m/s was obtained. The acceleration efficiency was estimated to be 23.4% when a total electrical energy of 216 kJ was discharged.
induction launcher;mutual inductance;pulsed power;driving coils;finite element analysis;
 Cited by
K. McKinney and P. Mongeau, IEEE Trans. Magn. 20, 239 (1984). crossref(new window)

R. Kaye, B. Turman, M. Aubuchon, D. Lamppa, G. Mann, Edward van Reuth, K. Fulton, G. Malejko, P. Magnotti, D. Nguyen, D. Borgwarth, A. Johnson, and R. Poppe, in Proc. 16th IEEE Int. Pulsed Power Conf., 1810 (2007).

M. S. Aubuchont, T. R. Lockner, and B. N. Turman, in Proc. 15th IEEE Int. Pulsed Power Conf., 75 (2005).

B. D. Skurdal and R. L. Gaigler, IEEE Trans. Magn. 45, 458 (2009). crossref(new window)

S. Barmada, A. Musolino, M. Raugi, and R. Rizzo, IEEE Trans. Magn. 37, 111 (2001). crossref(new window)

R. J. Kaye, IEEE Trans. Magn. 41, 194 (2005). crossref(new window)

Y. S. Jin, Y. B. Kim, J. S. Kim, C. Cho, S. W. Lim, B. Lee, S. H. Kim, S. An, S. H. Yoon, and I. S. Koo, IEEE Trans. Plasma Sci. 41, 2671 (2013). crossref(new window)

B. Lee, S. An, S. H. Kim, Y. H. Lee, K. S. Yang, Y. S. Jin, Y. B. Kim, J. S. Kim, C. Cho, S. H. Yoon, and I. S. Koo, IEEE Trans. Plasma Sci. 42, 2886 (2014). crossref(new window)

H. Kolm and P. Mongeau, IEEE Trans. Magn. 20, 227 (1984). crossref(new window)

S. Babic, F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R Ravaud, IEEE Trans. Magn. 47, 2034 (2011). crossref(new window)

K. A. Polzin, J. E. Adwar, and A. K. Hallock, IEEE Trans, Magn. 49, 1453 (2013). crossref(new window)

S. Madhavan, C. D. Sijoy, S. Pahari, S. Chaturvedi, and IPF Team, IEEE Trans. Plasma Sci. 42, 323 (2014). crossref(new window)

X. Tao, S. Wang, Y. Huangfu, S. Wang, and Y. Wang, IEEE Trans. Plasma Sci. 43, 1208 (2015). crossref(new window)