JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 20, Issue 4,  2015, pp.400-404
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2015.20.4.400
 Title & Authors
Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition
Ghabeli, Asef; Yazdani-Asrami, Mohammad; Doroudi, Aref; Gholamian, S. Asghar;
  PDF(new window)
 Abstract
Various kinds of winding arrangements can be used to enable fault current limiters (FCL) to tolerate higher forces without resulting in a substantial increase in construction and fabrication costs. In this paper, a distributed winding arrangement is investigated in terms of its effects on the short-circuit forces in a three-phase FCL. The force magnitudes of the AC supplied windings are calculated by employing a finite element-based model in the time stepping procedure. The leakage flux and radial and axial force magnitudes obtained from the simulation are compared to those obtained from a conventional winding arrangement. The comparison shows that the distributed winding arrangement significantly reduces the radial and, especially, the axial force magnitudes.
 Keywords
fault current limiter;short-circuit current;finite element method;electromagnetic force;
 Language
English
 Cited by
 References
1.
Kalsi, Swarn S. and Alex Malozemoff, Power Engineering Society General Meeting 2, 1426 (2004).

2.
Y. Xin, W. Gong, X. Niu, Z. Cao, J. Zhang, B. Tian, H. Xi, Y. Wang, H. Hong, Y. Zhang, B. Hou, and X. Yang, IEEE Trans. Appl. Supercond. 17, 1760 (2007). crossref(new window)

3.
Abdul Rahman, T. T. Lie, and K. Prasad, IEEE Trans. Appl. Supercond. 22, 5501211 (2012). crossref(new window)

4.
Abdul Rahman, T. T. Lie, and K. Prasad, IEEE Trans. Appl. Supercond. 22, 5500108 (2012). crossref(new window)

5.
Nadim Mahomed, Energize 12, 36 (2011).

6.
G. B. Kumbhar and S. V. Kulkarni, IEEE Trans. Power Delivery 22, 936 (2007). crossref(new window)

7.
G. P. Peter, International Journal of Advancements in Technology 2, 142 (2011).

8.
Jawad Faiz, Bashir Mahdi Ebrahimi, and Tahere Noori, IEEE Trans. Magn. 44, 590 (2008). crossref(new window)

9.
H. M. Ahn, J. Y. Lee, J. K. Kim, Y. H. Oh, S. Y. Jung, and S. C. Hahn, IEEE Trans. Ind. Appl. 47, 1267 (2011). crossref(new window)

10.
Heydari, Hossein, and Faramarz Faghihi, IEEE Trans. Appl. Supercond. 20, 2276 (2010). crossref(new window)

11.
S. L. Ho, Y. Li, Ho-ching Chris Wong, S. H. Wang, and R. Y. Tang, IEEE Trans. Magn. 40, 687 (2004). crossref(new window)

12.
G. Bertagnolli, ABB Ltd. (2007).

13.
Hyun-Mo Ahn, Yeon-Ho Oh, Joong-Kyoung Kim, Jae- Sung Song, and Sung-Chin Hahn, IEEE Trans. Magn. 48, 819 (2012). crossref(new window)