JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Design and Analysis for Loss Reduction of High-Speed Permanent Magnet Motor using a Soft Magnetic Composite
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 20, Issue 4,  2015, pp.444-449
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2015.20.4.444
 Title & Authors
Design and Analysis for Loss Reduction of High-Speed Permanent Magnet Motor using a Soft Magnetic Composite
Lee, Sung-Ho; Kim, Yong-Jae; Lee, Kyu-Seok; Kim, Sung-Jin;
  PDF(new window)
 Abstract
Soft magnetic composites (SMCs) are especially suitable for the construction of low-cost, high-performance motors with 3-D magnetic fields. The main advantages of SMCs is that the iron particles are insulated by the surface coating and adhesive used for composite bonding, the eddy-current loss is much lower than that in laminated steels, especially at higher frequencies, and the hysteresis loss becomes the dominant component of core losses. These properties enable machines to operate at higher frequencies, resulting in reduced machine size and weight. In this paper, 3-D topologies are proposed that enable the application of SMCs to effectively reduce losses in high-speed permanent magnet (PM) motors. In addition, the electromagnetic field characteristics of the motor topologies are evaluated and compared using a non-linear finite element method (FEM) based on 3-D numerical analysis, and the feasibility of the motor designs is validated.
 Keywords
soft magnetic composite (SMC);high-speed permanent magnet (PM) motor;finite element method (FEM);core loss;3-D numerical analysis;
 Language
English
 Cited by
1.
Electromagnetic Structure Design Study of Fault-Tolerant Interior Permanent Magnet Machines for Electric Vehicles Using Harmonic Order Shaping, Journal of Magnetics, 2016, 21, 4, 561  crossref(new windwow)
2.
Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor, Journal of Magnetics, 2016, 21, 4, 544  crossref(new windwow)
 References
1.
G. Cvetkovski, L. Petkovska, M. Cundev, and S. Gair, IEEE Trans. Magn. 38, 3165 (2002). crossref(new window)

2.
G. Cvetkovski and L. Petkovska, IEEE Trans. Magn. 44, 3812 (2008). crossref(new window)

3.
A. Reinap and M. Alakula, IEEE Trans. Magn. 48, 1613 (2012). crossref(new window)

4.
Y. Shen, Z. Q. Zhu, J. T. Chen, R. P. Deodhar, and A. Pride, IEEE Trans. Magn. 49, 3830 (2013). crossref(new window)

5.
F. Marignetti and V. D. Colli, IEEE Trans. Magn. 45, 2970 (2009). crossref(new window)

6.
G. D. Donato, F. G. Capponi, and F. Caricchi, IEEE Trans. Ind. Electron. 60, 4831 (2013). crossref(new window)

7.
T. Ishikawa, S. Sato, S. Takeguchi, and A. Matsuo, IEEE Trans. Magn. 48, 3132 (2012). crossref(new window)

8.
Y. Huang, J. Zhu, and Y. Guo, IEEE Trans. Magn. 45, 4680 (2009). crossref(new window)

9.
G. Lei, Y. G. Guo, J. G. Zhu, T. S. Wang, X. M. Chen, and K. R. Shao, IEEE Trans. Magn. 48, 923 (2012). crossref(new window)

10.
Y. Guo, J. G. Zhu, and J. J. Zhong, IEEE Trans. Magn. 39, 3199 (2003). crossref(new window)

11.
Y. Guo, J. G. Zhu, P. A. Watterson, and W. Wu, IEEE Trans. Ind. Appl. 39, 1696 (2003). crossref(new window)

12.
S. Baserrah, K. Rixen, and B. Orlik, J. Magn. 17, 100 (2012). crossref(new window)

13.
C. Goga, P. Lidija, C. Milan, and G. Sinclair, Int. J. Appl. Electromagn. Mecha. 13, 451 (2001).