JOURNAL BROWSE
Search
Advanced SearchSearch Tips
New Experimental Investigation of Magnetic and Electric Fields in the Vicinity of High-Voltage Power Lines
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 1,  2016, pp.102-109
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.1.102
 Title & Authors
New Experimental Investigation of Magnetic and Electric Fields in the Vicinity of High-Voltage Power Lines
Ghnimi, Said; Rajhi, Adnen; Gharsallah, Ali;
  PDF(new window)
 Abstract
In this paper, the theoretical and experimental characteristics of magnetic and electric fields in the vicinity of high voltage lines are investigated. To realize these measurements and calculations, we have developed some equations for two overhead power line configurations of 150 kV (single circuit, double circuit), based on Biot-savart law, image and Maxwell theories, in order to calculate the magnetic and electric fields. The measurements were done to a maximum distance from the tower of 50 m, at a height of 1m from the ground. These experiments take into consideration the real situations of the power lines and associated equipment. The experimental results obtained are near to that of the Biot-Savart theoretical results for a far distance from the tower; and for a distance close to the power line, the results from the image theory are in good agreement with the experimental results.
 Keywords
magnetic field;electric field;biot-savart law;overhead power lines;
 Language
English
 Cited by
 References
1.
G. Kulkarni and W. Z. Gandhare, ACEEE Int. J. on Electrical and Power Engineering 3, 28 (2012).

2.
D. Djalel and M. Mourad, Journal of Electrical and Electronic Engineering 2, 1 (2014). crossref(new window)

3.
B. A. Rachedi, A. Babouri, A. Lemzadmi, M. Nemamcha, and F. Berrouk, IEEE International Conference on Intelligent Energy and Power Systems 36 (2014).

4.
S. Ghnimi, A. Rajhi, A. Gharsallah, and F. Khlifa, Am. J. Appl. Sci. 8, 499 (2011). crossref(new window)

5.
G. Duyan, X. Guizhi, Y. Hongli, Y. Shuo, Y. Qingxin, and Y. Weili, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Canada. 1331 (2008).

6.
L. Xiao and K. E. Holbert, IEEE North American Power Symposium (NAPS). 1 (2014).

7.
M. Milutinov, A. Juhas, and M. Prsa, 2nd International Conference on Moderen Power Systems MPS, Romania. 313 (2008).

8.
J. J. Laforest, Transmission line reference Book 345 kV and above, Electric Power Research Institute (1982) pp. 329-417.

9.
R. G. Olsen, D. Deno, and R. S. Baishiki, IEEE Trans. Power Del. 3, 2127 (1988). crossref(new window)

10.
R. G. Olsen and T. A. Pankaskie, IEEE Trans. Power App. Syst. 102, 769 (1983).

11.
R. G. Olsen and P. S. Wong, IEEE Trans. Power Del. 7, 2046 (1992). crossref(new window)

12.
G. Filippopoulos and D. Tsanakas, IEEE Trans. Power Del. 20, 1474 (2005). crossref(new window)

13.
E. Salinas, Proc. 5th Int. Power Engineering Conf., Singapore. 325 (2001).

14.
D. Tsanakas, E. Mimos, and A. Tzinevrakis, International Conference on Energy & Environmental Systems, Greece 237 (2006).

15.
P. Pettersson, IEEE Trans. Power Del. 11, 1587 (1996). crossref(new window)

16.
C. Garrido, A. F. Otero, and J. Cidras, IEEE Trans. Power Del. 18, 1310 (2003). crossref(new window)

17.
R. G. Olsen, D. Deno, and R. S. Baishiki, IEEE Trans. Power Del. 3, 2127 (1988). crossref(new window)

18.
R. G. Olsen and T. A. Pankaskie, IEEE Trans. Power App. Syst. 102, 769 (1983).

19.
A. A. Dahab, F. K. Amoura, and W. S. Abu-Elhaiga, IEEE Trans. Power Del. 20, 2114 (2005). crossref(new window)

20.
F. P. Dawalibi, IEEE Trans. Power Delivery 8, 1285 (1993). crossref(new window)

21.
P. S. Maruvada, A. Turgeon, D. L. Guolet, and C. U. Cardinal, IEEE Trans. Power Delivery 13, 1322 (1998). crossref(new window)

22.
A. O. Sougui and M. Z. Jenu, IEEE Asia-Pacific Conference on Applied Electromagnetics, Malaysia 207 (2014).

23.
T. Lisewski and J. Luszcz, International Symposium on Electromagnetic Compatibility, Sweden. 360 (2014).

24.
P. S. Maruvada, A. Turgeon, D. L. Guolet, and C. U. Cardinal, IEEE Trans. Power Delivery. 13, 1328 (1998). crossref(new window)

25.
M. Misakian, IEEE International Symposium on Electromagnetic Compatibility. 150 (1993).

26.
A. S. Farag, M. M. Dawoud, T. C. Cheng, and J. S. Cheng, Elect. Power Syst. Res. 48, 151 (1999). crossref(new window)

27.
W. E. Feero, J. Yontz, and J. H. Dunlap, IEEE Trans. Power Del. 4, 1862 (1989). crossref(new window)

28.
W. K. Daily and F. Dawalibi, IEEE Trans. Power Del. 9, 324 (1994).

29.
A. Safigianni and C. G. Tsompanidou, IEEE Trans. Power Del. 20, 1800 (2005). crossref(new window)

30.
A. Safigianni and C. G. Tsompanidou, IEEE Trans. Power Del. 24, 38 (2009). crossref(new window)

31.
B. Jaekel, Proc. Int. Wroclaw Symp. Electromagnetic Compatibility, Poland 133 (1998).

32.
W. T. Kaune and L. E. Zaffanella, IEEE Trans. Power Del. 7, 2082 (1992). crossref(new window)

33.
H. Ahmad, N. A. Ahmad, and M. I. Jambak, Proceedings of the XIVth International Symposium on High Voltage Engineering, China. 1 (2005).

34.
G. Petrovic, T. Kilic, and T. Garma, Elektronika ir Elektrotechnika 19, 33 (2013).

35.
N. H. Malik, IEEE Trans. Electrical Insulation 24, 3 (1989). crossref(new window)