JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Contrast Agent Concentration on the Signal Intensity and Turbo Factor of TSE and Slice-selective IR in T1-weighted Contrast Imaging
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 1,  2016, pp.115-124
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.1.115
 Title & Authors
Effects of Contrast Agent Concentration on the Signal Intensity and Turbo Factor of TSE and Slice-selective IR in T1-weighted Contrast Imaging
Han, Yong Soo; Lee, Soo Chul; Lee, Dong Yong; Choi, Jiwon; Lee, Jong Woong; Kweon, Dae Cheol;
  PDF(new window)
 Abstract
The present study analyzes T1 TSE and T1 slice sel. IR (dark_fluid) signal strength according to the degree of gadolinium contrast agent dilution and analyzes the turbo factors with regard to changes in the maximum and overall signal strength to study correlations between changes and signal-to-noise ratios (SNRs) and compare peak-to-peak SNR (PSNR) enhancement in order to improve the quality of T1-weighted images. Enhancement TR (600 msec) evaluated to determine the T1 TSE turbo factor and obtain the maximum signal strength, T1WI were used sequentially to experiment with turbo factors_1-4. T1 slice sel. IR (dark-fluid) was used to sequentially test turbo factors_2-5 but not turbo factor_1 at a TR (1500 msec) and compare data at an increase in T1 of 900 msec. The T1 TSE was reduced according to the contrast agent concentration. Phantom signal strength increased, whereas turbo factors_1-4 exhibited maximum signal strength at a concentration of 3 mmol, followed by a gradual decrease. In the turbo factors_2-5, the signal strength increased sharply to maximum signal strength at 0.7 mmol, followed by a reduction. T1 TSE had a greater maximum signal strength than did T1 slice sel. IR (dark_fluid). A comparison of SNR found that T1 TSE imaging was superior (33.3 dB) in turbo factor_1 and T1 slice sel. IR (dark_fluid) was highest (33.9 dB) at turbo factor_5. A PSNR comparison analysis was not sufficient to distinguish between the images obtained with both techniques at 30 dB or higher under all experimental conditions.
 Keywords
contrast agent;gadolinium;PSNR;SNR;turbo factor;
 Language
English
 Cited by
1.
Light Probe를 이용한 MRI 검사실 및 모니터의 조도와 휘도 측정,김지민;한아영;이하영;이소라;권대철;

한국자기학회지, 2016. vol.26. 5, pp.168-172 crossref(new window)
2.
유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가,최영재;권대철;

한국자기학회지, 2016. vol.26. 3, pp.92-98 crossref(new window)
3.
위상대조도 MRI에서 숙임각에 따른 상행대동맥의 혈류 측정,김문선;권대철;

한국자기학회지, 2016. vol.26. 4, pp.142-148 crossref(new window)
1.
Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery, Journal of the Korean Magnetics Society, 2016, 26, 3, 92  crossref(new windwow)
2.
Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta, Journal of the Korean Magnetics Society, 2016, 26, 4, 142  crossref(new windwow)
3.
Measurement of MRI Monitor Luminance and MRI Room Illuminance with a Light Probe, Journal of the Korean Magnetics Society, 2016, 26, 5, 168  crossref(new windwow)
 References
1.
J. Masuda, T. Nabika, and Y. Notsu, Curr. Opin. Neurol. 14, 77 (2001). crossref(new window)

2.
W. D. Taylor, M. E. Payne, K. R. Krishnan, H. R. Wagner, J. M. Provenzale, D. C. Steffens, and J. R. MacFall, Biol. Psychiatry 50, 179 (2001). crossref(new window)

3.
K. R. Krishnan, Am. Heart J. 140, 70 (2000). crossref(new window)

4.
J. H. Choi, S. M. Lim, and Y. Kim, J. Korean Radiol. Soc. 64, 317 (2011). crossref(new window)

5.
B. J. Park, M. G. Kim, S. I. Suh, S. J. Hong, K. R. Cho, B. K. Seo, K. Y. Lee, N. J. Lee, and J. H. Kim, J. Korean Med. 44, 317 (2001).

6.
K. W. Choi, S. Y. Son, T. H. Kim, M. S. Han, J. H. Lee, and J. W. Min, J. Korean Radiol. Soc. 14, 1294 (2013).

7.
F. A. Jolesz, Diagn. Imaging 6, 78 (1992).

8.
M. H. Cho, S. Y. Lee, C. W. Mun, H. H. Cho, W. Yi, and W. M. Choi, J. Biomed. Eng. Res. 19, 91 (1998).

9.
S. W. Atlas, R. I. Grossman, D. B. Hackney, H. I. Goldberg, L. T. Bilaniuk, and R. A. Zimmerman, Am. J. Roentgenol. 151, 1515 (1988).

10.
K. M. Jones, R. B. Schwarts, M. T. Mantello, S. S. Ahn, R. Khorasani, S. Mukherji, K. Oshio, and R. V. Mulkern, Am. J. Neuroradiol. 15, 401 (1994).

11.
L. J. Wolnsky, A. Evans, K. Belitsis, P. D. Shaderowfsky, R. Gonzales, J. A. Maldjian, H. J. Lee, and J. Pak, Clin. Imaging 20, 164 (1996). crossref(new window)

12.
G. M. Bydder and I. R. Young, J. Comput. Assist. Tomogr. 9, 659 (1985). crossref(new window)

13.
R. C. Smith, R. T. Contrast, C. Reinhol, T. McCauley, R. C. Lange, and S. McCarthy, Comput. Assist. Tomogr. 18, 209 (1994). crossref(new window)

14.
D. P. Mueller, W. T. Yuh, D. J. Fisher, K. B. Chandran, M. R. Crain, and Y. H. Kim, Am. J. Neuroradiol. 14, 66 (1993).

15.
K. Peldschus, M. Handorf, P. Robert, M. Port, G. Adam, and C. U. Herborn, J. Magn. Reson. Imaging 32, 459 (2010). crossref(new window)

16.
A. W. Winfried, Eur. J. Radiol. 65, 2 (2008). crossref(new window)

17.
M. Goyen, T. C. Lauenstein, C. U. Herborn, J. F. Debatin, S. Bosk, and S. G. Ruehm, J. Magn. Reson. Imaging 14, 602 (2001). crossref(new window)

18.
S. Haneder, U. Attenberger, S. O. Schoenberg, C. Loewe, J. Arnaiz, H. J. Michaely, D. E. Mannheim, A. T. Vienna, and E. S. Santander, Eur. Congress Radiol. C1016 (2011).