Advanced SearchSearch Tips
The Effects of Nonmagnetic Bolus on Contralateral Breast Skin Dose during Tangential Breast Irradiation Therapy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 1,  2016, pp.133-140
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.1.133
 Title & Authors
The Effects of Nonmagnetic Bolus on Contralateral Breast Skin Dose during Tangential Breast Irradiation Therapy
Won, Young-Jin; Cho, Jae-Hwan; Kim, Sung-chul;
  PDF(new window)
In this study the contralateral breast skin dose was decreased. It was to apply the results to the clinical study after analysis of different radiation dose amounts to contralateral breast with nonmagnetic bolus and without nonmagnetic bolus. A Rando phantom was computed tomography (CT) simulated, five treatment plans were generated: open tangents, open field in field, wedge 15, wedge 30, and intensity-modulated radiotherapy (IMRT) plan with 50.4 Gy to cover sufficient breast tissue. Contralateral breast skin dose was measured at 8 points using a glass dosimeter. The average contralateral breast dose using nonmagnetic bolus showed better excellence in decreasing the absorbed dose in the order of cGy, cGy (29%), cGy (49%), and cGy (64%) than changing the treatment plan. This study focused on decreasing the effect of scattered dose by use of a nonmagnetic bolus on the contralateral breast during radiotherapy in breast cancer patients and an intriguingly significant decrease was observed parallel to the opposed beam.
nonmagnetic bolus;breast dose;tangential breast therapy;
 Cited by
Z. S. Kim, S. Y. Min, C. S. Yoon, H. J. Lee, J. S. Lee, H. J. Youn, H. K. Park, D. Y. Noh, and M. H. Hur, J. Breast Cancer. 17, 99 (2014). crossref(new window)

D. B. John, B. H. Elizabeth, B. Maria, S. Marilyn, and B. A. Flannery, N. Engl. J. Med. 326, 781 (1992). crossref(new window)

G. Starkschall, F. J. George, and D. L. Zellmer, Med. Phys. 10, 906 (1983). crossref(new window)

T. M. Williams, J. M. Moran, S. H. Hsu, R. Marsh, B. Yanke, B. A. Fraass, and L. J. Pierce, Int. J. Radiation Oncology Biol. Phys. 82, 2079 (2012). crossref(new window)

Y. M. Moon, D. J. Rhee, J. K. Kim, Y. R. Kang, M. W. Lee, H. J. Lim, and D. H. Jeong, Korean J. Med. Phys. 24, 140 (2013).

J. E. Lah, D. O. Shin, J. Y. Kim, H. S. Hong, C. I. Lim, H. G. Jeong, and T. S. Suh, J. Korea Asso. Radiat. Prot. 31, 181 (2006).

Y. C. Lo, G. Yasuda, T. J. Fitzgerald, and A. U. Marcia, Int. J. Radiat. Oncol. Biol. Phys. 46, 187 (2000). crossref(new window)

R. Ramani, S. Russell, and P. O'Brien, Int. J. Radiation Oncology Biol. Phys. 43, 245 (1999). crossref(new window)

W. A. Beckham, C. C. Popescu, V. V. Patenaude, E. S. Wai, and I. A. Olivotto, Int. J. Radiation Oncology Biol. Phys. 69, 918 (2007). crossref(new window)

C. Arun, J. Can. Res. Ther. 3, 8 (2007). crossref(new window)

M. T. Kim, H. K. Lee, Y. C. Heo, and J. H. Cho, J. Magn. 19, 15 (2014). crossref(new window)

J. H. Kim, M. S. Han, S. J. Yoo, K. J. Kim, and J. H. Cho, J. Magn. 20, 120 (2015). crossref(new window)

J. H. Kim, and J. P. Hong, J. Magn. 20, 155 (2015). crossref(new window)

A. K. Bhatnagar, E. Brandner, D. Sonnik, A. Wu, S. Kalnicki, M. Deutsch, and D. E. Heron Breast Cancer Res. Treat. 96, 41 (2006). crossref(new window)