Advanced SearchSearch Tips
Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 1,  2016, pp.153-158
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.1.153
 Title & Authors
Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation
Zeeshan, A.; Majeed, A.;
  PDF(new window)
This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.
Ferromagnetic particle;Buoyancy effects;line source dipole;Non-Darcy Porous medium;ohmic dissipation;heat transfer;
 Cited by
Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet, Journal of Magnetics, 2016, 21, 3, 468  crossref(new windwow)
Magnetic source impact on nanofluid heat transfer using CVFEM, Neural Computing and Applications, 2016, 1433-3058  crossref(new windwow)
Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media, Neural Computing and Applications, 2017, 1433-3058  crossref(new windwow)
R. E. Rosensweig, Ferrohydrodynamics, Dover Publications, Inc. New York (1997).

J. L. Neuringer, J. Non-linear Mech. 1, 123 (1966). crossref(new window)

R. Ganguly, S. Sen, and I. K. Puri, J. Magn. Magn. Mater. 271, 63 (2014).

M. Sheikholeslami and D. D. Ganji, Energy 75, 400 (2014). crossref(new window)

M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, J. Taiwan Institute of Chemical Engineers 47, 6 (2015). crossref(new window)

M. S. Kandelousi and R. Ellahi, Zeitschrift fur Naturforschung A 70, 115 (2015).

A. Zeeshan, R. Ellahi, and M. Hassan, The European Physical Journal Plus. 129, 1 (2014). crossref(new window)

S. Rashidi, M. Dehghan, R. Ellahi, M. Riaz, and M. T. Jamal-Abad, J. Magn. Magn. Mater. 378, 128 (2015). crossref(new window)

R. Ellahi, Applied Mathematical Modelling 37, 1451 (2013). crossref(new window)

E. M. A. Elbashbeshy, Appl. Math. Computation. 136, 139 (2003). crossref(new window)

S. Whitaker, Transport in Porous Media 25, 27 (1996). crossref(new window)

D. Pal and H. Mondal, Comm. Nonl. Sci. and Num. Sim. 15, 1197 (2010). crossref(new window)

C. H. Chen, Int. J. Eng. Sci. 42, 699 (2004). crossref(new window)

D. Pal and H. Mondal, Comm. Nonl. Sci. and Num. Sim. 15, 1553 (2010). crossref(new window)

H. I. Andersson and O. A. Valnes, Acta Mechanica. 128, 39 (1998). crossref(new window)

A. Zeeshan, A. Majeed, and R. Ellahi, Journal of Molecular Liquids. 215, 549 (2016). crossref(new window)