Advanced SearchSearch Tips
Photocatalytic Degradation of Oxytetracycline Using Co-precipitation Method Prepared Fe2O3/TiO2 Nanocomposite
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 1,  2016, pp.46-50
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.1.046
 Title & Authors
Photocatalytic Degradation of Oxytetracycline Using Co-precipitation Method Prepared Fe2O3/TiO2 Nanocomposite
Jia, Yuefa; Liu, Chunli; Li, Rong;
  PDF(new window)
nanocomposite were successfully synthesized by co-precipitation method using and as raw materials. Structural and textural features of the mixed oxide samples were characterized by X-ray diffractometer, field emission scanning electron microscopy and energy-dispersive X-ray. The effects of initial concentration of oxytetracycline (OTC), different competitive ions and organics on the photocatalytic degradation rate of OTC by the nanocomposite were analyzed under UV and visible light irradiation. The results indicate that the optimized initial concentration of OTC was 50 mg/L to achieve the best photocatalytic efficiency. , , and EDTA in the aqueous suspension were found to suppress the degradation rate of OTC, whereas the effect of and can be ignored.
;photocatalyst;competitive ions and organics;OTC;
 Cited by
A. K. Singh, G. Rathore, V. Sing, I. Mani, R. K. Singh, S. K. Mishra, B. N. Mishra, and O. P. Verma, Int. J. Microbiol. Res. 1, 25 (2009). crossref(new window)

M. Rabolle and N. H. Spliid, Chemosphere 40, 715 (2000). crossref(new window)

R. Li, Y. F. Jia, J. Wu, and Q. Zhen, RSC Adv. 5, 40764 (2015). crossref(new window)

A. J. Watkinson, E. J. Murbyd, D. W. Kolpine, and S. D. Costanzof, Sci. Total. Environ. 407, 2711 (2009). crossref(new window)

S. G. Segura and E. Brillas, Water Res. 45, 75 (2011). crossref(new window)

M. H. Khan, H. Bae, and J. Y. Jung, J. Hazard. Mater. 181, 659 (2010). crossref(new window)

O. U. Merih and A. K. B. Isil, J. Agric. Food. Chem. 57, 11284 (2009). crossref(new window)

L. Migliore, M. Fiori, A. Spadoni, and E. Galli, J. Hazard. Mater. 215-216, 227 (2012). crossref(new window)

L. H. Huang, Y. Y. Sun, W. L. Wang, Q. Y. Yue, and T. Yang, Chem. Eng. J. 171, 1446 (2011). crossref(new window)

J. H. O. S. Pereira, V. J. P. Vilar, M. T. Borges, O. Gonzalez, S. Esplugas, and R. A. R. Boaventura, Sol. Energy 85, 2732 (2011). crossref(new window)

C. Zhao, Y. Zhou, D. R. D. Johannes, J. Zhai, D. R. Zhai, J. Y. Wei, and H. P. Deng, Chem. Eng. J. 248, 280 (2014). crossref(new window)

C. Zhao, H. P. Deng, Y. Li, and Z. H. Liu, J. Hazard. Mater. 176, 884 (2010). crossref(new window)

J. H. O. S. Pereira, A. C. Reis, D. Queiros, O. C. Nunes, M. T. Borges, V. J. P. Vilar, and R. A. R. Boaventura, Sci. Total. Environ. 463-464, 274 (2013). crossref(new window)

X. L. Liu, P. Lv, G. X. Yao, C. C. Ma, P. W. Huo, and Y. S. Yan, Chem. Eng. J. 217, 398 (2013). crossref(new window)

A. K. Tripathi, M. C. Mathpal, P. Kumar, M. K. Singh, S. K. Mishra, R. K. Srivastava, J. S. Chung, G. Verma, M. M. Ahmad, and A. Agarwal. Mat. Sci. Semicon. Proc. 23, 136 (2014). crossref(new window)

M. Mishra, H. Park, and D. M. Chun, Adv. Powder Technol (in press). http://dx. crossref(new window)

M. W. Lam, K. Tantuco, and S. A. Mabury, Environ. Sci. Technol. 37, 899 (2003). crossref(new window)

Y. P. Zhao, J. J. Geng, X. R. Wang, X. Y. Gu, and S. X. Gao, J. Colloid and Interf Sci. 361, 247 (2011). crossref(new window)

Z. Q. He, X. Xu, S. Song, L. Xie, J. J. Tu, J. M. Chen, and B. Yan, J. Phys. Chem. C 112, 16431 (2008).

S. Q. Liu, L. R. Feng, N. Xu, Z. G. Chen, and X. M. Wang, Chem. Eng. J. 203, 432 (2013).

W. Zhou, H. G. Fu, K. Pan, C. G. Tian, Y. Qu, P. P. Lu, and C. C. Sun, J. Phys. Chem. C 112, 19584 (2008). crossref(new window)

W. Bernd, L. Johannes, B. Philippe, and S. Laura, Environ. Sci. Technol. 30, 2397 (1996). crossref(new window)