JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 1,  2016, pp.6-11
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.1.006
 Title & Authors
Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure
Kim, Miyoung;
  PDF(new window)
 Abstract
The magnetic anisotropy energy (MAE) and the saturation magnetization of (110) heterostructures with n = 1, 2, and 3 are investigated in first-principles within the density functional theory by using the precise full-potential linearized augmented plane wave (FLAPW) method. We compare the results employing two different exchange correlation potentials, that is, the local density approximation (LDA) and the generalized gradient approximation (GGA), and include the spin-orbit coupling interaction of the valence states in the second variational way. The MAE is found to be enhanced significantly compared to those of bulk Fe and Co and the magnetic easy axis is in-plane in agreement with experiment. Also the MAE exhibits the in-plane angle dependence with a two-fold anisotropy showing that the direction is the most favored spin direction. We found that as the periodicity increases, (i) the saturation magnetization decreases due to the reduced magnetic moment of Fe far from the interface, (ii) the strength of in-plane preference of spin direction increases yielding enhancement of MAE, and (iii) the volume anisotropy coefficient decreases because the volume increase outdo the MAE enhancement.
 Keywords
first-principles calculations;electronic structure;magnetic anisotropy;magnetization;
 Language
English
 Cited by
 References
1.
D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999). crossref(new window)

2.
A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009). crossref(new window)

3.
R. M. Bozorth, Ferromagnetism, Van Nostrand, New York (1951).

4.
T. K. Kim and M. Takahashi, Appl. Phys. Lett. 20, 492 (1972). crossref(new window)

5.
D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. Toney, M. Schwickert, J. U. Thiele, and M. Doerner, IEEE Trans. Magn. 36, 10 (2000). crossref(new window)

6.
M. Kim, L. Zhong, and A. J. Freeman, Phys. Rev. B 57, 5271 (1998).

7.
E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).

8.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). crossref(new window)

9.
A. H. MacDonal, W. E. Pickett, and D. D. Koelling, J. Phys. C: Solid St. Phys. 13, 2675 (1980).

10.
D. S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 70, 869 (1993).

11.
X. D. Wang, R. Wu, D. S. Wang, and A. J. Freeman, Phys. Rev. B 54, 61 (1996). crossref(new window)

12.
T. Burkert, L.Nordstrom, O. Eriksson, and O. Heinonen, Phys. Rev. Lett. 93, 027203-1 (2004). crossref(new window)

13.
V. A. Vas'ko, M. Kim, O. Mryasov, V. Sapozhnikov, M. K. Minor, A. J. Freeman, and M. T. Kief, Appl. Phys. Lett. 89, 902502 (2006).

14.
Landolt-Bornstein, New Series VOL III/19a, edited by H. J. P. Wein, Springer, Berlin (1988).