Advanced SearchSearch Tips
Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.159-163
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.159
 Title & Authors
Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures
Kim, Dong-Jun; Park, Jin-Seok; Ryu, Ho Jin; Jeong, Jong-Ryul; Chung, Chang-Kyu; Park, Byong-Guk;
  PDF(new window)
Antiferromagnet (AFM)/ferromagnet (FM) bilayer structures are widely used in the magnetic devices of sensor and memory applications, as AFM materials can induce unidirectional anisotropy of the FM material via exchange coupling. The strength of the exchange coupling is known to be sensitive to quality of the interface of the AFM/FM bilayers. In this study, we utilize proton irradiation to modify the interface structures and investigate its effect on the magnetic properties of AFM/FM structures, including the exchange bias and magnetic thermoelectric effect. The magnetic properties of IrMn/CoFeB structures with various IrMn thicknesses are characterized after they are exposed to a proton beam of 3 MeV and . We observe that the magnetic moment is gradually reduced as the amount of the dose is increased. On the other hand, the exchange bias field and thermoelectric voltage are not significantly affected by proton irradiation. This indicates that proton irradiation has more of an influence on the bulk property of the FM CoFeB layer and less of an effect on the IrMn/CoFeB interface.
exchange bias;antiferromagnet;ferromagnet;proton irradiation;
 Cited by
J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). crossref(new window)

B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994). crossref(new window)

J. H. Lee, H. D. Jeong, H. Kyung, C. S. Yoon, C. K. Kim, B. G. Park, and T. D. Lee, J. Appl. Phys. 91, 217 (2002). crossref(new window)

J. H. Lee, S. J. Kim, C. S. Yoon, C. K. Kim, B. G. Park, and T. D. Lee, J. Appl. Phys. 92, 6241 (2002). crossref(new window)

W. Zhang, M. B. Jungfleisch, W. Jiang, J. E. Pearson, A. Hoffmann, F. Freimuth, and Y. Mokrousov, Phys. Rev. Lett. 113, 196602 (2014). crossref(new window)

J. B. S. Mendes, R. O. Cunha, O. Alves Santos, P. R. T. Ribeiro, F. L. A. Machado, R. L. Rodriguez-Suarez, A. Azevedo, and S. M. Rezende, Phys. Rev. B 89, 140406(R) (2014). crossref(new window)

I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Nature 476, 189 (2011). crossref(new window)

Luqiao Liu, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012). crossref(new window)

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008). crossref(new window)

H. Xi, B. Bian, Z. Zhuang, D. E. Laughlin, and R. M. White, IEEE Trans on Magnetics 30, 2644 (2000).

S. Kim, S. Lee, J. Ko, J. Son, M. Kim, S. Kang, and J. Hong, Nature Nanotech. 7, 567 (2012). crossref(new window)

S. Kim, S. Lee, and J. Hong, ACS Nano 8 4698 (2014). crossref(new window)

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 1818 (2010).

N. Ishimatsu, T. Shichijo, Y. Matsushima, H. Maruyama, Y. Matsuura, T. Tsumuraya, T. Shishidou, T. Oguchi, N. Kawamura, M. Mizumaki, T. Matsuoka, and K. Takemura, Phys. Rev. B 86, 104430 (2012). crossref(new window)

K.-D. Lee, D.-J. Kim, H. Y. Lee, S.-H. Kim, J.-H. Lee, K.-M. Lee, J.-R. Jeong, K.-S. Lee, H.-S. Song, J.-W. Sohn, S.-C. Shin, and B.-G. Park, Scientific Reports 5, 10249 (2015). crossref(new window)