Advanced SearchSearch Tips
Effect of Boron Additions on Glass Formation and Magnetic Properties of Fe-Co-Ti-Zr-B Amorphous Ribbons
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.164-167
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.164
 Title & Authors
Effect of Boron Additions on Glass Formation and Magnetic Properties of Fe-Co-Ti-Zr-B Amorphous Ribbons
Kim, Sumin; Han, Bo Kyeong; Choi-Yim, Haein;
  PDF(new window)
The effect of the B additions on glass formation and magnetic properties is reported for the (x = 2, 4, 6 and y = 35, 40) alloy system. The ribbon samples with the width of 2 mm for each composition were prepared by the melt spinning technique; furthermore, their phase information was obtained from X-ray diffraction. Glass formation and magnetic properties were measured using differential scanning calorimetry and vibrating sample magnetometer respectively. The (x = 2 and y = 40) system has the nanocrystalline phase identified as , as well as the amorphous phase, whereas all other alloys are fully amorphous. It is associated with the role of B on the glass formation. The widest supercooled liquid region is obtained as 71 K at x = 4 (both y = 35 and 40). The saturation magnetization decreases with the increase of the amount of the B addition, and the highest value is 1.59 T as x = 2 and y = 35 for this alloy system.
Fe-based;amorphous;ribbon;boron addition;
 Cited by
P. Duwez and S. C. H. Lin, J. Appl. Phys. 38, 4096 (1967). crossref(new window)

J. Durand, IEEE Trans. Magn. 12, 945 (1976). crossref(new window)

C. Suryanarayana and A. Inoue, Int. Mater. Rev. 58, 131 (2013). crossref(new window)

M. Mitera, T. Masumoto, and N. S. Kazama, J. Appl. Phys. 50, 7609 (1979). crossref(new window)

A. Inoue, B. L. Shen, and C. T. Chang, Acta Mater. 52, 4093 (2004). crossref(new window)

B. L. Shen, A. Inoue, and C. T. Chang, Appl. Phys. Lett. 85, 4911 (2004). crossref(new window)

S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Acta Mater. 50, 489 (2002). crossref(new window)

W. H. Wang, Prog. Mater Sci. 52, 540 (2007). crossref(new window)

Z. B. Zhao, H. Li, J. Gao, Y. Wu, and Z. P. Lu, Intermetallics 19, 1502 (2011). crossref(new window)

M. Mitera, M. Naka, T. Masumoto, N. Kazama, and K. Watanabe, Phys. Stat. Sol. (a) 49, 163 (1978). crossref(new window)

A. Makino, T. Kubota, and C. T. Chang, Mater. Trans. JIM 48, 3024 (2007). crossref(new window)

J. H. Zhang, C. T. Chang, A. D. Wang, and B. L. Shen, J. Non-Cryst. Solids 358, 1443 (2012). crossref(new window)

Z. Q. Liu and Z. F. Zhang, J. Appl. Phys. 114, 243519 (2013). crossref(new window)

B. Han, S. Kim, and H. Choi-Yim, J. Nanosci. Nanotechno. 16, 1 (2016). crossref(new window)

S. Kim, B. K. Han, D. T. Quach, D-H. Kim, Y. K. Kim, and H. Choi-Yim, Curr. Appl. Phys. 16, 515 (2016). crossref(new window)

M. P. Klug and L. F. Alexanader, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York (1974) pp. 634.

Y. Takahara and N. Narita, Mater. Trans. JIM 41, 1077 (2000). crossref(new window)

R. Onodera, S. Kimura, K. Watanabe, Y. Yokoyama, A. Makino, and K. Koyama, J. Alloy. Compd. 637, 213 (2015). crossref(new window)

A. Inoue, T. Zhang, and T. Masumoto, J. Non.-Cryst. Solids 156-158, 437 (1993). crossref(new window)

T. D. Shen and R. B. Schwarz, Appl. Phys. Lett. 75, 49 (1999). crossref(new window)

B. Yao, Y. Zhang, L. Si, H. Tan, and Y. Li, J. Alloy. Comp. 370, 1 (2004). crossref(new window)