JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Detwinning Monoclinic Phase BiMnO3 Thin Film
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.168-172
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.168
 Title & Authors
Detwinning Monoclinic Phase BiMnO3 Thin Film
Dash, Umasankar; Raveendra, N.V.; Jung, Chang Uk;
  PDF(new window)
 Abstract
has been a promising candidate as a magnetoelectric multiferroic while there have been many controversial reports on its ferroelectricity. The detailed analysis of its film growth, especially the growth of thin film having monoclinic symmetry has not been reported. We studied the effect of miscut angle, the substrate surface, and film thickness on the symmetry of thin film. A flat (110) substrate resulted in a thin film with three domains of and 1 degree miscut in the (110) substrate resulted in dominant domain preference in the thin film. The larger miscut resulted in a nearly perfect detwinned film with a monoclinic phase. This strong power of domain selection due to the step edge of the substrate was efficient even for the thicker film which showed a rather relaxed growth behavior along the [1-10] direction.
 Keywords
;detwinning;monoclinic;symmetry lowered substrate surface;miscut;
 Language
English
 Cited by
 References
1.
O. T. Tambunan, K. J. Parwanta, S. K. Acharya, B. W. Lee, C. U. Jung, Y. S. Kim, B. H. Park, H. Jeong, J.-Y. Park, M. R. Cho, Y. D. Park, W. S. Choi, D.-W. Kim, H. Jin, S. Lee, S. J. Song, S.-J. Kang, M. Kim, and C. S. Hwang, Appl. Phys. Lett. 105, 063507 (2014). crossref(new window)

2.
S. K. Acharya, R. V. Nallagatla, O. T. Tambunan, B. W. Lee, C. Liu, C. U. Jung, B. H. Park, J.-Y. Park, Y. Cho, D.-W. Kim, J. Jo, D.-H. Kwon, M. Kim, C. S. Hwang, and S. C. Chae, ACS Appl. Mater. Interfaces 8, 7902 (2016). crossref(new window)

3.
B. W. Lee and C. U. Jung, Appl. Phys. Lett. 96, 102507 (2010). crossref(new window)

4.
Q. Gan, R. A. Rao, and C. B. Eom, Appl. Phys. Lett. 70, 1962 (1997). crossref(new window)

5.
G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C. B. Eom, D. H. A. Blank, and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012). crossref(new window)

6.
M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001). crossref(new window)

7.
M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987). crossref(new window)

8.
J.-H. Lee, P. Murugavel, H. J. Ryu, D. Lee, J. Y. Jo, J. W. Kim, H. J. Kim, K. H. Kim, Y. Jo, M.-H. Jung, Y. W. Oh, Y.-W. Kim, J. G. Yoon, J.-S. Chung, and T. W. Noh, Adv. Mater. 18, 3125 (2006). crossref(new window)

9.
D. Lee, J.-H. Lee, P. Murugavel, S. Y. Jang, T. W. Noh, Y. Jo, M.-H. Jung, Y.-D. Ko, and J.-S. Chung, Appl. Phys. Lett. 90, 182504 (2007). crossref(new window)

10.
B. Lee, O.-U. Kwon, R. H. Shin, W. Jo, and C. U. Jung, Nanoscale Res. Lett. 9, 1 (2014). crossref(new window)

11.
Oswaldo Dieguez and Jorge iniguez, Phys. Rev. B 91, 184113 (2005).

12.
H. W. Jang, D. Ortiz, S.-H. Baek, C. M. Folkman, R. R. Das, P. Shafer, Y. Chen, C. T. Nelson, X. Pan, R. Ramesh, and C.-B. Eom, Adv. Mat. 21, 817 (2009). crossref(new window)

13.
B. W. Lee, C. U. Jung, M. Kawasaki, and Y. Tokura, J. Appl. Phys. 104, 103909 (2008). crossref(new window)

14.
Antonio F. Moreira dos Santos, Anthony K. Cheetham, W. Tian, X. Pan, Y. Jia, N. J. Murphy, J. Lettieri, and D. G. Schlom, Appl. Phys. Lett. 84, 91 (2004). crossref(new window)