JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Facile Synthesis of Flower-like Superparamagnetic Fe3O4/BiOCl Nanocomposites as High Effective Magnetic Recyclable Photocatalyst under Visible Light
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.179-182
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.179
 Title & Authors
Facile Synthesis of Flower-like Superparamagnetic Fe3O4/BiOCl Nanocomposites as High Effective Magnetic Recyclable Photocatalyst under Visible Light
Wang, Wei; He, Mingyi; Zhang, Huan; Dai, Yatang;
  PDF(new window)
 Abstract
In this paper, 10 nm nanoparticles were modified on the surface of flower-like bismuth oxychloride (BiOCl) spheres by a facile co-precipitation method. The results showed that the nanocomposites exhibited excellent photocatalytic activity and superparamagnetic property () under visible light for Rhodamine B (RhB) degradation. Moreover, the photocatalyst possessed magnetic recyclable property, which could maintain high photocatalytic effective even after 20 cycle times. These characteristic indicates a promising application for wastewater treatment.
 Keywords
magnetic nanoparticles;bismuth oxychloride (BiOCl);photocatalysts;superparamagnetic;
 Language
English
 Cited by
 References
1.
N. Liu, V. Haublein, X. M. Zhou, U. Venkatesan, M. Hartmann, M. Mackovic, T. Nakajima, E. Spiecker, A. Osvet, L. Frey, and P. Schmuki, Nano Lett. 15, 6815 (2015). crossref(new window)

2.
K. W. Shen, F. Ran, X. X. Zhang, C. Liu, N. J. Wang, X. Q. Niu, Y. Liu, D. J. Zhang, L. B. Kong, L. Kang, and S. W. Chen, Synth. Met. 209, 369 (2015). crossref(new window)

3.
M. Abdallah and M. E. Moustafa, Annal. Chim. 94, 601 (2004). crossref(new window)

4.
T. D. Nguyen-Phan, S. Luo, Z. Y. Liu, A. D. Gamalski, J. Tao, W. Q. Xu, E. A. Stach, D. E. Polyansky, S. D. Senanayake, E. Fujita, and J. A. Rodriguez, Chem. Mater. 27, 6282 (2015). crossref(new window)

5.
D. I. Won, J. S. Lee, J. M. Ji, W. J. Jung, H. J. Son, C. Pac, and S. O. Kang, J. Am. Chem. Soc. 137, 13679 (2015). crossref(new window)

6.
W. K. Zhang and K. J. Gaffney, Acc. Chem. Res. 48, 1140 (2015). crossref(new window)

7.
Z. Zhu, Z. Y. Lu, D. D. Wang, X. Tang, Y. S. Yan, W. D. Shi, Y. S. Wang, N. L. Gao, X. Yao, and H. J. Dong, Appl. Catal. B-Environ. 182, 115 (2016). crossref(new window)

8.
F. Deng, X. Lu, F. Zhong, X. Pei, X. Luo, S. Luo, D. D. Dionysiou, and C. Au, Nanotechnology. 27, 065701 (2015).

9.
X. Mao, C. Fan, Y. Wang, Y. Wang, and X. Zhang, Appl. Surf. Sci. 317, 517 (2014). crossref(new window)

10.
P. Zhang, Z. L. Mo, L. J. Han, Y. W. Wang, G. P. Zhao, C. Zhang, and Z. Li, J. Mol. Catal. a-Chem. 402, 17 (2015). crossref(new window)

11.
Z. Zhu, Z. Y. Lu, X. X. Zhao, Y. S. Yan, W. D. Shi, D. D. Wang, L. L. Yang, X. Lin, Z. F. Hua, and Y. Liu, Rsc Adv. 5, 40726 (2015). crossref(new window)

12.
S. L. Ma, S. H. Zhan, Y. N. Jia, and Q. X. Zhou, ACS Appl. Mater. Interfaces. 7, 21875 (2015). crossref(new window)

13.
P. H. Shao, J. Y. Tian, B. R. Liu, W. X. Shi, S. S. Gao, Y. L. Song, M. Ling, and F. Y. Cui, Nanoscale. 7, 14254 (2015). crossref(new window)

14.
L. Zhang, W. Z. Wang, L. Zhou, M. Shang, and S. M. Sun, Appl. Catal. B-Environ. 90, 458 (2009). crossref(new window)

15.
C. W. Tan, G. Q. Zhu, M. Hojamberdiev, C. Xu, J. Liang, P. F. Luo, and Y. Liu, J. Clust. Sci. 24, 1115 (2013). crossref(new window)

16.
J. Y. Bai, R. F. Zhao, and G. W. Diao, Curr. Nanosci. 11, 186 (2015). crossref(new window)

17.
X. Taiping, X. Longjun, L. Chenglun, Y. Jun, and W. Mei, Dalton Trans. 43, 2211 (2014). crossref(new window)