Advanced SearchSearch Tips
Study on Proton Radiation Resistance of 410 Martensitic Stainless Steels under 3 MeV Proton Irradiation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.183-186
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.183
 Title & Authors
Study on Proton Radiation Resistance of 410 Martensitic Stainless Steels under 3 MeV Proton Irradiation
Lee, Jae-Woong; Surabhi, S.; Yoon, Soon-Gil; Ryu, Ho Jin; Park, Byong-Guk; Cho, Yeon-Ho; Jang, Yong-Tae; Jeong, Jong-Ryul;
  PDF(new window)
In this study, we report on an investigation of proton radiation resistance of 410 martensitic stainless steels under 3 MeV proton with the doses ranging from to at the temperature 623 K. Vibrating sample magnetometer (VSM) and X-ray diffractometer (XRD) were used to study the variation of magnetic properties and structural damages by virtue of proton irradiation, respectively. VSM and XRD analysis revealed that the 410 martensitic stainless steels showed proton radiation resistance up to . Proton energy degradation and flux attenuations in 410 stainless steels as a function of penetration depth were calculated by using Stopping and Range of Ions in Matter (SRIM) code. It suggested that the 410 stainless steels have the radiation resistance up to dpa which corresponds to neutron irradiation of . These results could be used to predict the maintenance period of SUS410 stainless steels in fission power plants.
martensitic steels;magnetization;ferromagnet;proton irradiation;
 Cited by
R. J. Kurtz, A. Alamo, E. Lucon, Q. Huang, S. Jitsukawa, A. Kimura, R. L. Klueh, G. R. Odette, C. Petersen, M. A. Sokolov, P. Spatig, and J.-W. Rensman, J. Nucl. Mater. 386, 411 (2009).

K. Yin, S. Qiu, R. Tang, Q. Zhang, and L. Zhang, J. Supercrit. Fluids 50, 235 (2009). crossref(new window)

D. Squarer, T. Schulenberg, D. Struwe, Y. Oka, D. Bittermann, N. Aksan, C. Maraczy, R. Kyrki-Rajamaki, A. Souyri, and P. Dumaz, Nucl. Eng. Des. 221, 167 (2003). crossref(new window)

A. B. C, Yann de Carlan, Xavier Averty, Jean-Chrisophe Brachet, Jean-Luc Bertin, Frank Rozenblum, and Olivier Rabouille, J. ASTM Int. 2, JAI12354 (2005). crossref(new window)

Y. Z. Shen, S. H. Kim, H. D. Cho, C. H. Han, and W. S. Ryu, Nucl. Eng. Des. 239, 648 (2009). crossref(new window)

M. Noh, M. J. Gi, D. Kim, Y.-W. Park, J. Lee, and J. Kim, J. Magn. 20, 86 (2015). crossref(new window)

T. Ishida, S. Imayoshi, T. Yoritsune, H. Nunokawa, M. Ochiai, and Y. Ishizaka, J. Nucl. Sci. Technol. 38, 557 (2001). crossref(new window)

R. Schaeublin, D. Gelles, and M. Victoria, J. Nucl. Mater. 307, 197 (2002).

S. Kim, S. Lee, J. Ko, J. Son, M. Kim, S. Kang, and J. Hong, Nature Nanotech. 7, 567 (2012). crossref(new window)

S. Kim, S. Lee, and J. Hong, ACS Nano 8, 4698 (2014). crossref(new window)

K. Yabuuchi, Y. Kuribayashi, S. Nogami, R. Kasada, and A. Hasegawa, J. Nucl. Mater. 446, 142 (2014). crossref(new window)

X. H. Li, J. Lei, G. G. Shu, and Q. M. Wan, Nucl. Instruments Methods Phys. Res. Sect. B 350, 14 (2015). crossref(new window)

R. E. Stoller, Effects of Radiation on Materials: 21st International Symposium, ASTM STP 1447, M. L. Grossbeck, T. R. Allen, R. G. Lott, and A. S. Kumar, Eds., ASTM International, West Conshohocken, PA (2003).