JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis of Magnetic Permeability Spectra of Metamaterials Composed of Cut Wire Pairs by Circuit Theory
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.187-191
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.187
 Title & Authors
Analysis of Magnetic Permeability Spectra of Metamaterials Composed of Cut Wire Pairs by Circuit Theory
Lim, Jun-Hee; Kim, Sung-Soo;
  PDF(new window)
 Abstract
Retrieving the equivalent electromagnetic parameters (permittivity and permeability) plays an important role in the research and application of metamaterials. Frequency dispersion of magnetic permeability has been theoretically predicted in a metamaterial composed of cut wire pairs (CWP) separated by dielectric substrate on the basis of circuit theory. Magnetic resonance resulting from antiparallel currents between the CWP is observed at the frequency of minimum reflection loss (corresponding to absorption peak) and effective resonator size can be determined. Having calculated the circuit parameters (inductance L, capacitance C) and resonance frequency from CWP dimension, the frequency dispersion of permeability of Lorentz like magnetic response can be predicted. The simulated resonance frequency and permeability spectra can be explained well on the basis of the circuit theory of an RLC resonator.
 Keywords
permeability;metamaterials;circuit theory;magnetic resonance;
 Language
English
 Cited by
 References
1.
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996). crossref(new window)

2.
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory and Techniques, 47, 2075 (1999). crossref(new window)

3.
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). crossref(new window)

4.
R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001). crossref(new window)

5.
V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, Opt. Express 15, 16651 (2007). crossref(new window)

6.
N. T. Tung, V. T. T. Thuy, J. W. Park, J. Y. Rhee, and Y. Lee, J. Appl. Phys. 107, 023530 (2010). crossref(new window)

7.
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008). crossref(new window)

8.
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002). crossref(new window)

9.
D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, Appl. Phys. Lett. 77, 2246 (2000). crossref(new window)

10.
D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, Phys. Rev. E 71, 036617 (2005). crossref(new window)

11.
A. Ourir and H. H. Ouslimani, Appl. Phys. Lett. 98, 113505 (2011). crossref(new window)

12.
J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, Opt. Lett. 31, 3620 (2006). crossref(new window)

13.
B. Kante, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, Phys. Rev. B 79, 075121 (2009). crossref(new window)

14.
A. Ourir1 and H. H. Ouslimani, Appl. Phys. Lett. 98, 113505 (2011). crossref(new window)

15.
Nanostructured Metamaterials - Exchange between experts in electromagnetics and material science, edited by A. F. de Baas, Luxembourg: Publications Office of the European Union (2010) pp. 34-36.