JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Non-contact Detection Method for Smelting in Submerged Arc Furnace based on Magnetic Field Radiation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.204-208
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.204
 Title & Authors
A Non-contact Detection Method for Smelting in Submerged Arc Furnace based on Magnetic Field Radiation
Liu, WeiLing; Chang, XiaoMing;
  PDF(new window)
 Abstract
This paper demonstrates the key parameter detection for smelting of submerged arc furnace (SAF) based on magnetic field radiation. A magnetic field radiation model for the inner structure of SAF is established based on relative theory of electromagnetic field. A simple equipment of 3D magnetic field detection system is developed by theoretical derivation and simulation. The experiments are carried out under the environment of industrial field and AC magnetic field generated by electrode currents and molten currents in the furnace is reflected outside of the furnace. The experimental results show that the key parameters of smelting including the position of electrode tip, the length of electric arc, and the liquid level of molten bath can be achieved. The computed tomography for SAF can be realized by the detection for smelting.
 Keywords
submerged arc furnace;key parameter of smelting;magnetic field detection;
 Language
English
 Cited by
 References
1.
M. Moghadasian and E. Alenasser, J. Electromagn. Anal. Appl. 3, 47 (2011).

2.
A. C. Mulholland, P. J. Breretonstiles, and C. J. Hockaday, J. S. Afr. I. Min. Metal. 109, 601 (2009).

3.
N. N. Zhang, Z. J. Wang, and D. J. Zhang, IEEE Comput. Mechatr. Contr. Electr. Eng. 3, 108 (2010).

4.
J. Zhang, S. J. Chu, and Z. S. Li, Ferro-Alloys 3, 5 (2014).

5.
S. M. Kang, Ferro-Alloys 2, 30 (2012).

6.
J. M. Wu, Q. X. Wang, Z. Q. Xu, and Q. H. Zhu, Contr. Instru. Chem. Indus. 41, 181 (2013).

7.
Y. Wang, Z. Z. Mao, H. X. Tian, Y. Li, and P. Yuan, J. Cent. South. Univ. T. 17, 560 (2010). crossref(new window)

8.
Y. Bai, Q. Wang, F. R. Meng, and H. Y. Wang, J. ChangChun. University T 33, 383 (2012).

9.
Z. H. An, Ms. D. Thesis, Changchun University of Technology, China (2010).

10.
S. J. Chu, S. L. Zeng, and Z. C. Huang, Ferro-Alloys 2, 13 (2009).

11.
S. J. Chu, X. E. Bao, and Z. S. Li, Ferro-Alloys 3, 22 (2013).

12.
A. S. Hauksdottir, T. Soderstrom, Y. P. Thorfinnsson, and A. Gestsson, IEEE T. Contr. Syst. T 3, 377 (1996).

13.
Q. H. Xiao, Ferro-Alloys 1, 11 (1982).

14.
N. S. Zhang, Ferro-Alloys 6, 1 (1986).

15.
Q. G. Reynolds and R. T. Jones, Miner. Eng. 19, 325 (2006). crossref(new window)

16.
M. Ramirez, J. Alexis, G. Trapaga, P. Jonsson, and J. Mckelliget, Trans. ISIJ 19, 325 (2006).

17.
F. Martell, M. Ramirez, A. Llamas, and O. Micheloud, ISIJ International 53, 743 (2013). crossref(new window)