JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Rotating Flux Pump Employing a Magnetic Circuit and a Stabilized Coated Conductor HTS Stator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.239-243
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.239
 Title & Authors
A Rotating Flux Pump Employing a Magnetic Circuit and a Stabilized Coated Conductor HTS Stator
Jiang, Z.; Bumby, C.W.; Badcock, R.A.; Long, N.J.; Sung, H.J.; Park, M.;
  PDF(new window)
 Abstract
High temperature superconductor (HTS) magnet systems usually employ metal current leads which bridge between the cryogenic environment and room temperature. Such current leads are the dominant heat load for these magnet systems due to a combination of electrical resistance and heat conduction. HTS flux pumps enable large currents to be injected into a HTS magnet circuit without this heat load. We present results from an axial-type HTS mechanically rotating flux pump which employs a ferromagnetic circuit and a Cu-stabilized coated conductor (CC) HTS stator. We show the device can be described by a simple circuit model which was previously used to describe barrel-type flux pumps, where the model comprises an internal resistance due to dynamic resistance and a DC voltage source. Unlike previously reported devices, we show the internal resistance and DC voltage in the flux pump are not exactly proportional to frequency, and we ascribe this to the presence of eddy currents. We also show that this axial-type flux pump has superior current injection capability over barrel-type flux pumps which do not incorporate a magnetic circuit.
 Keywords
HTS flux pump;coated conductors;dynamic resistance;
 Language
English
 Cited by
 References
1.
L. J. M. van de Klundert, and H. H. J. ten Kate, Cryogenics 21, 195 (1981). crossref(new window)

2.
S. Lee, W. S. Kim, Y. Kim, J. Y. Lee, S. H. Park, J. K. Lee, G. W. Hong, S. S. Kim, Y. J. Hwang, and K. Choi, IEEE Trans. Appl. Supercond. 26, 0606104 (2016).

3.
C. Hoffmann, D. Pooke, and A. D. Caplin, IEEE Trans. Appl. Supercond. 21, 1638 (2011).

4.
Z. Jiang, K. Hamilton, N. Amemiya, R. A. Badcock, and C. W. Bumby, Appl. Phys. Lett. 105, 112601 (2014). crossref(new window)

5.
T. A. Coombs, J. F. Fagnard, and K. Matsuda, IEEE Trans. Appl. Supercond. 24, 8201005 (2014).

6.
Z. Jiang, C. W. Bumby, R. A. Badcock, H. J. Sung, N. J. Long, and N. Amemiya, Supercond. Sci. Technol. 28, 115008 (2015). crossref(new window)

7.
Z. Jiang, C. W. Bumby, R. A. Badcock, and H. J. Sung, IEEE Trans. Appl. Supercond. 26, 4900706 (2016).

8.
C. W. Bumby, Z. Jiang, J. E. Storey, A. E. Pantoja, and R. A. Badcock, Appl. Phys. Lett. 108, 122601 (2016). crossref(new window)

9.
K. Ogasawara, K. Yasukochi, S. Nose, and H. Sekizawa, Cryogenics 16, 33 (1976). crossref(new window)

10.
M. P. Oomen, J. Rieger, M. Leghissa, B. ten Haken, and H. H. J. ten Kate, Supercond. Sci. Technol. 12, 382 (1999). crossref(new window)