JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Particle Characteristics and Temperature on Shear Yield Stress of Magnetorheological Fluid
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Magnetics
  • Volume 21, Issue 2,  2016, pp.244-248
  • Publisher : The Korean Magnetics Society
  • DOI : 10.4283/JMAG.2016.21.2.244
 Title & Authors
Effect of Particle Characteristics and Temperature on Shear Yield Stress of Magnetorheological Fluid
Wu, Xiangfan; Xiao, Xingming; Tian, Zuzhi; Chen, Fei; Jian, Wang;
  PDF(new window)
 Abstract
Aiming to improve the shear yield stress of magnetorheological fluid, magnetorheological fluids with different particle characteristics are prepared, and the influence rules of particle mass fraction, particle size, nanoparticles content and application temperature on shear yield stress are investigated. Experimental results indicate that shear yield stress increases approximate linearly with the enhancement of particle mass fraction. Particle size and the nanoparticles within 10% mass fraction can improve the shear yield stress effectively. When the application temperature is higher than , the shear yield stress decreases rapidly because of thermal expansion and thermal magnetization effect.
 Keywords
preparation;shear yield stress;magnetorheological fluid;nanoparticles;temperature;
 Language
English
 Cited by
 References
1.
S. R. Agustin, F. Donado, and R. E. Rubio, J. Magn. Magn. Mater. 335, 149 (2013). crossref(new window)

2.
Y. H. Huang, Y. H. Jiang, X. B. Yang, and R. Z. Xu, J. Magn. 20, 317 (2015). crossref(new window)

3.
H. J. Kim, G. C. Kim, G. S. Lee, T. M. Hong, and H. J. Choi, J. Nanosci. Nanotechno, 13, 6005 (2013). crossref(new window)

4.
Z. Z. Tian, F. Chen, and D. M. Wang, J. Intell. Mater. Syst. Struct. 25, 1937 (2014). crossref(new window)

5.
O. Erol, B. Gonenc, D. Senkal, S. Alkan, and H. Gurocak, J. Intell. Mater. Syst. Struct. 23, 427 (2012). crossref(new window)

6.
G. A. Ewijk, G. J. Vroege, and A. P. Philipse, J. Magn. Magn. Mater. 201, 31 (1999). crossref(new window)

7.
X. B. Yang, Y. H. Jiang, Y. H. Huang, R. Z. Xu, H. G. Piao, G. M. Jia, and X. Y. Tan, J. Magn. 19, 345 (2014). crossref(new window)

8.
Z. Z. Tian, F. Chen, and D. M. Wang, J. Intell. Mater. Syst. Struct. 26, 414 (2015). crossref(new window)

9.
M. Ashtiani, S. H. Hashemabadi, and A. Ghaffari, J. Magn. Magn. Mater. 374, 716 (2015). crossref(new window)

10.
X. Tang and H. Conrad, J. Phys. D Appl. Phys. 33, 3026 (2000). crossref(new window)

11.
J. M. Ginder, L. C. Davis, and L. D. Elie, Int. J. Mod. Phys. B 10, 3293 (1996). crossref(new window)

12.
J. M. Ginder and L. C. Davis, Appl. Phys. Lett. 65, 3410 (1994). crossref(new window)

13.
Y. M. Han, S. Kim, J. W. Kang, and S. B. Choi, Smart Mater. Struct. 24, 115016 (2015). crossref(new window)

14.
A. Spaggiari and, E. Dragoni, J. Intell. Mater. Syst. Struct. 26, 1764 (2015). crossref(new window)

15.
D. M. Wang, B. Zi, Y. Zeng, Y. F. Hou, and Q. R. Meng, J. Mater. Sci. 49, 8459 (2014). crossref(new window)

16.
H. Sahin, X. Wang, and F. Gordaninejad, J. Intell. Mater. Syst. Struct. 20, 2215 (2009). crossref(new window)