JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Peltier Heating-Assisted Low Temperature Plasma Ionization for Ambient Mass Spectrometry
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Mass Spectrometry Letters
  • Volume 6, Issue 3,  2015, pp.71-74
  • Publisher : Korean Society Mass Spectrometry
  • DOI : 10.5478/MSL.2015.6.3.71
 Title & Authors
Peltier Heating-Assisted Low Temperature Plasma Ionization for Ambient Mass Spectrometry
Lee, Hyoung Jun; Oh, Ji-Seon; Heo, Sung Woo; Moon, Jeong Hee; Kim, Jeong-hoon; Park, Sung Goo; Park, Byoung Chul; Kweon, Gi Ryang; Yim, Yong-Hyeon;
  PDF(new window)
 Abstract
Low temperature plasma (LTP) ionization mass spectrometry (MS) is one of the widely used ambient analysis methods which allows soft-ionization and rapid analysis of samples in ambient condition with minimal or no sample preparation. One of the major advantages of LTP MS is selective analysis of low-molecular weight, volatile and low- to medium-polarity analytes in a sample. On the contrary, the selectivity for particular class of compound also implies its limitation in general analysis. One of the critical factors limiting LTP ionization efficiency is poor desorption of analytes with low volatility. In this study, a home-built LTP ionization source with Peltier heating sample stage was constructed to enhance desorption and ionization efficiencies of analytes in a sample and its performance was evaluated using standard mixture containing fatty acid ethyl esters (FAEEs). It was also used to reproduce the previous bacterial identification experiment using pattern-recognition for FAEEs. Our result indicates, however, that the bacterial differentiation from FAEE pattern recognition using LTP ionization MS still has many limitations.
 Keywords
low temperature plasma ionization;Peltier heating;volatility;fatty acid ethyl ester;
 Language
English
 Cited by
1.
Comparison of desorption enhancement methods in the low temperature plasma ionization mass spectrometry for detecting fatty acids in Drosophila, Current Applied Physics, 2017, 17, 8, 1120  crossref(new windwow)
 References
1.
Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471. crossref(new window)

2.
Cody, R. B.; Laramée, J. A.; Durst, H. D. Anal. Chem. 2005, 77, 2297. crossref(new window)

3.
Venter, A. R.; Douglass, K. A.; Shelley, J. T.; Hasman, Jr. G.; Honarvar, E. Anal. Chem. 2014, 86, 233. crossref(new window)

4.
Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X. R.; Cooks, R. G. Anal. Chem. 2008, 80, 9097. crossref(new window)

5.
Salter, T. L.; Bunch, J.; Gilmore, I. S. Anal. Chem. 2014, 86, 9264. crossref(new window)

6.
Garcia-Reyes, J. F.; Harper, J. D.; Salazar, Z. A.; Charipar, N. A.; Ouyang, Z.; Cooks, R. G. Anal. Chem. 2011, 83, 1084. crossref(new window)

7.
Chen, W. D.; Hou, K. Y.; Xiong, X. C.; Jiang, Y.; Zhao, W. D.; Hua, L.; Chen, P.; Xie, Y. Y.; Wang, Z. X.; Li, H. Y. Analyst 2013, 138, 5068. crossref(new window)

8.
Zhang, J. I.; Costa, A. B.; Tao, W. A.; Cooks, R. G. Analyst 2011, 136, 3091. crossref(new window)