JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Applications of Stochastic Process in the Quadrupole Ion traps
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Mass Spectrometry Letters
  • Volume 6, Issue 4,  2015, pp.91-98
  • Publisher : Korean Society Mass Spectrometry
  • DOI : 10.5478/MSL.2015.6.4.91
 Title & Authors
Applications of Stochastic Process in the Quadrupole Ion traps
Chaharborj, Sarkhosh Seddighi; Kiai, Seyyed Mahmod Sadat; Arifina, Norihan Md; Gheisari, Yousof;
  PDF(new window)
 Abstract
The Brownian motion or Wiener process, as the physical model of the stochastic procedure, is observed as an indexed collection random variables. Stochastic procedure are quite influential on the confinement potential fluctuation in the quadrupole ion trap (QIT). Such effect is investigated for a high fractional mass resolution Δm/m spectrometry. A stochastic procedure like the Wiener or Brownian processes are potentially used in quadrupole ion traps (QIT). Issue examined are the stability diagrams for noise coefficient, η=0.07;0.14;0.28 as well as ion trajectories in real time for noise coefficient, η=0.14. The simulated results have been obtained with a high precision for the resolution of trapped ions. Furthermore, in the lower mass range, the impulse voltage including the stochastic potential can be considered quite suitable for the quadrupole ion trap with a higher mass resolution.
 Keywords
Stochastic process;Quadrupole ion trap;Ion motion;Fractional mass resolution;
 Language
English
 Cited by
 References
1.
Blaum, K. Phys. Rep. 2006, 425, 1. crossref(new window)

2.
Douglas, D. J.; Frank, A. J.; Mao, D. M. Mass Spectrom. Rev. 2005, 24, 1. crossref(new window)

3.
Kingdon, K . H. Phys. Rev. 1923, 21, 408. crossref(new window)

4.
Hu, Q. Z.; Noll, R. J.; Li, H. Y.; Makarov, A.; Hardman, M.; Cooks, R. G. J. Mass Spectrom. 2005, 40, 430. crossref(new window)

5.
Seddighi Chaharborj, S.; Sadat Kiai, S. M. J. Mass Spectrom. 2010, 45, 1111. crossref(new window)

6.
Paul, W.; Steinwedel, H. Z. Naturforsch. 1953, 8, 448.

7.
Kashanian, F.; Nouri, S.; Seddighi Chaharborj, S.; Mohd Rizam, A. B. Int. J. Mass Spectrom. 2011, 303, 199. crossref(new window)

8.
Sadat Kiai, S.; M. Seddighi Chaharborj, S.; Abu Bakar, M. R.; Fudziah, I. J. Anal. At. Spectrom. 2011. 26, 2247. crossref(new window)

9.
Seddighi Chaharborj, S.; Sadat Kiai, S. M.; Abu Bakar, M. R.; Ziaeian, I.; Fudziah, I. Int. J. Mass Spectrom. 2012, 39, 63. crossref(new window)

10.
Itano, W. M.; Heinzen, D. J.; Bollinger, J. J.; Wineland, D. J. Phys. Rev. A 1990, 41, 2295. crossref(new window)

11.
Rafac, R. J.; Young, B. C.; Beall, J. A.; Itano, W. M.; Wineland, D. J.; Berquist, J. C. Phys. Rev. Lett. 2000, 85, 2462. crossref(new window)

12.
Kielpinski, D.; Meyer, V.; Rowe, M. A.; Sackett, C. A.; Itano, W. M.; Monroe, C.; Wineland, D. J. Science 2001, 291, 1013. crossref(new window)

13.
Beaty, E. C. J. Appl. Phys. 1987, 61, 2118. crossref(new window)

14.
Seddighi Chaharborj, S.; Abu Bakar, M. R.; Fudziah, I. Int. J. Mod. Phys. 2012, 9, 373.

15.
Virginia, R. Y.; Thaleia, Z. Insur. Math. Econ. 2000, 27. 1. crossref(new window)

16.
Denis, P. IEEE Trans. Commun. 2007, 55, 1607. crossref(new window)

17.
Lorenzo, G. IEEE Signal Proc. Let. 2006, 13, 608. crossref(new window)

18.
Seddighi Chaharborj, S.; Sadat Kiai, S. M.; Abu Bakar, M. R.; Ziaeian, I.; Fudziah, I. Int. J. Mass Spectrom. 2012, 309, 63. crossref(new window)

19.
Seddighi Chaharborj, S.; Sadat Kiai, S. M. J. Mass Spectrom. 2010, 45, 1111. crossref(new window)

20.
March, R. E. J. Mass Spectrom. 2000, 200, 285. crossref(new window)

21.
Seddighi Chaharborj, S.; Phang, P. S.; Sadat Kiai, S. M.; Majid, Z. A.; Abu Bakar, M. R.; Fudziah, I. Rapid Commun. Mass Spectrom. 2012, 26, 1481. crossref(new window)