Advanced SearchSearch Tips
Effects of Heat Shock Treatment on Enzymatic Proteolysis for LC-MS/MS Quantitative Proteome Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Mass Spectrometry Letters
  • Volume 7, Issue 1,  2016, pp.1-11
  • Publisher : Korean Society Mass Spectrometry
  • DOI : 10.5478/MSL.2016.7.1.1
 Title & Authors
Effects of Heat Shock Treatment on Enzymatic Proteolysis for LC-MS/MS Quantitative Proteome Analysis
Arul, Albert-Baskar; Han, Na-Young; Jang, Young-Su; Kim, Hyojin; Kim, Hwan-Mook; Lee, Hookeun;
  PDF(new window)
Various efforts have been developed to improve sample preparation steps, which strongly depend on hands-on processes for accurate and sensitive quantitative proteome analysis. In this study, we carried out heating the sample prior to trypsin digestion using an instrument to improve the tryptic digestion process. The heat shock generated by the system efficiently denatured proteins in the sample and increased the reproducibility in quantitative proteomics based on peptide abundance measurements. To demonstrate the effectiveness of the protocol, three cell lines (A human lung cancer cell line (A549), a human embryonic kidney cell line (HEK293T), and a human colorectal cancer cell line (HCT-116)) were selected and the effect of heat shock was compared to that of normal tryptic digestion processes. The tryptic digests were desalted and analysed by LC-MS/MS, the results showed 57 and 36% increase in the number of identified unique peptides and proteins, respectively, than conventional digestion. Heat shock treated samples showed higher numbers of shorter peptides and peptides with low inter-sample variation among triplicate runs. Quantitative LC-MS/MS analysis of heat shock treated sample yielded peptides with smaller relative error percentage for the triplicate run when the peak areas were compared. Exposure of heat-shock to proteomic samples prior to proteolysis in conventional digestion process can increase the digestion efficiency of trypsin resulting in production of increased number of peptides eventually leading to higher proteome coverage.
Denaturation;mass spectrometry;proteolysis;Heat shock;
 Cited by
Boja, E. S.; Rodriguez, H. Rodriguez, Proteomics 2012, 12 1093. crossref(new window)

Zhang, Y.; Fonslow, B .R.; Shan, B.; Baek, M.-C.; Yates, J. R. J. Am. Chem. Soc., 2013, 113. 2343.

Wisniewski, J. R.; Zougman, A.; Nagaraj, N.; Mann, M. Nat. Methods 2009, 6. 359. crossref(new window)

Proc, J. L.; Kuzyk, M. A.; Hardie, D. B.; Yang, J.; Smith, D. S.; Jackson, A. M.; Parker, C. E.; Borchers, C. H. J. Proteome. Res. 2010, 9. 5422. crossref(new window)

Glatter, T.; Ludwig, C.; Ahrne, E.; Aebersold, R.; Heck, A. J.; Schmidt, A. J. Proteome. Res. 2012, 11. 5145. crossref(new window)

Leon, I. R.; Schwammle, V.; Jensen, O. N.; Sprenger, R. R. Mol. Cell. Proteomics 2013, 12. 2992. crossref(new window)

Kulak, N. A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Nat. Methods 2014, 11. 319. crossref(new window)

Hustoft, H. K.; Malerod, H.; Wilson, S. R.; Reubsaet, L.; Lundanes, E.; Greibrokk, T. Int. Proteomics 2012, 73.

Capelo, J. L.; Carreira, R.; Diniz, M.; Fernandes, L. Galesio, M.; Lodeiro, C.; Santos, H. M.; Vale, G. Anal. Chim. Acta 2009, 650. 151. crossref(new window)

Weston, L. A.; Bauer, K. M.; Hummon, A. B. Anal. Methods-UK 2013, 5. 4615. crossref(new window)

Sun, W.; Gao, S.; Wang, L.; Chen, Y.; Wu, S.; Wang, X.; Zheng, D.; Gao, Y. Mol. Cell. Proteomics 2006, 5. 769. crossref(new window)

Montfort, B. A. v.; Canas, B.; Duurkens, R.; Godovac-Zimmermann, J.; Robillard, G. T. J. Mass. Spectrom. 2002, 37. 322. crossref(new window)

Svensson, M.; Boren, M.; Skold, K.; Falth, M.; Sjogren, B.; Andersson, M.; Svenningsson, P.; Andren, P. E. J. Proteome. Res. 2009, 8. 974.

Kennedy, S. A.; Scaife, C.; Dunn, M. J.; Wood, A. E.; Watson, R.W. Proteomics 2011, 11. 2560. crossref(new window)

Kultima, K.; Skold, K.; Boren, M. J. Proteomics 2015, 75 145. crossref(new window)

Arul, A, -B.; Han, N. -Y.; Lee, H. Mass Spectrom. Lett., 2014, 4, 25. crossref(new window)

Eng, J. K.; Fischer, B.; Grossmann, J.; Maccoss, M. J. J. Proteome. Res. 2008, 7. 4598. crossref(new window)

Klimek, J.; Eddes, J. S.; Hohmann, L.; Jackson, J.; Peterson, A.; Letarte, S.; Gafken, P. R.; Katz, J. E.; Mallick, P.; Lee, H.; Schmidt, A.; Ossola, R.; Eng, J. K.; Aebersold, R.; Martin, D. B. J. Proteome. Res. 2007, 7 96. crossref(new window)

Tsou, C. C.; Tsai, C. F.; Tsui, Y. H.; Sudhir, P. R.; Wang, Y. T.; Chen, Y. J.; Chen, J. Y.; Sung, T. Y.; Hsu, W. L. Mol. Cell. Proteomics 2010, 9. 131. crossref(new window)

Zhan, X.; Desiderio, D. BMC Med. Genomics 2010, 3. 13. crossref(new window)

Nicole, N. K.; Robert, D. R. D. S.; Robert, L. R. L. H. J. Biol. Chem. 2007, 282. e23.

Geiger, T.; Wehner, A.; Schaab, C.; Cox, J.; Mann, M. Mol. Cell. Proteomics 2012, 11. M111.014050 crossref(new window)

Bantscheff, M.; Lemeer, S.; Savitski, M. M.; Kuster, B. Anal. Bioanal. Chem. 2012, 404. 939. crossref(new window)

Tran, B. Q.; Hernandez, C.; Waridel, P.; Potts, A.; Barblan, J.; Lisacek, F.; Quadroni, M. J. Proteome. Res. 2010, 10. 800. crossref(new window)

Walker, J. The Proteomics Protocols Handbook, Humana Press, 2005.

Kyte, J.; Doolittle, R. F. J. Mol. Biol. 1982, 157. 105. crossref(new window)

Ragoonanan, V.; Aksan, A. Biophys. J. 2008, 94. 2212. crossref(new window)

Grassl, J.; Westbrook, J. A.; Robinson, A.; Boren, M.; Dunn, M. J.; Clyne, R. K. Proteomics 2009, 9. 4616. crossref(new window)