JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dual Nano-Electrospray and Mixing in the Taylor Cone
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Mass Spectrometry Letters
  • Volume 7, Issue 1,  2016, pp.21-25
  • Publisher : Korean Society Mass Spectrometry
  • DOI : 10.5478/MSL.2016.7.1.21
 Title & Authors
Dual Nano-Electrospray and Mixing in the Taylor Cone
Radionova, Anna; Greenwood, David R.; Willmott, Geoff R.; Derrick, Peter J.;
  PDF(new window)
 Abstract
Dual-channel nano-electrospray has recently become an ionization technique of great promise especially in biological mass spectrometry. This unique approach takes advantage of the mixing processes that occurs during electrospray. Understanding in more detail the fundamental principles influencing spray formation further study of the origins of the mixing processes: (1) in a Taylor cone region, (2) in charged droplets or (3) in both environments. The dual-channel emitters were made from borosilicate theta-shape glass tubes (O.D. 1.2 mm) and had a tip diameters of less than 4 μm. Electrical contact was achived by deposition of a thin film of an appropriate metal onto the surface of the emitter. The experimental investigation of the Taylor cone formation in a dual-channel electrospray emitter has been carried out by injection of polystyrene beads (diameter 3 μm) at very low concentrations into one of the channels of the non-tapered theta-glass tubes. High-speed camera experiments were set up to visualize the mixing processes in Taylor cone regions for dual-channel emitters. Mass spectra from dual nano-electrospray are presented.
 Keywords
nano-electrospray;theta-shaped dual channel emitters;Taylor cone;mass spectrometry;
 Language
English
 Cited by
1.
Rapid Hydrogen–Deuterium Exchange in Liquid Droplets, Journal of the American Chemical Society, 2017, 139, 20, 6851  crossref(new windwow)
2.
Re-configurable, multi-mode contained-electrospray ionization for protein folding and unfolding on the millisecond time scale, The Analyst, 2017, 142, 12, 2152  crossref(new windwow)
 References
1.
Wilm, M. S.; Mann, M. Int. J. Mass Spectrom. Ion Proc. 1994, 136, 167. crossref(new window)

2.
Wilm, M. S.; Mann, M. Anal. Chem. 1996, 68, 1. crossref(new window)

3.
Mark, L.; Gill, M.; Mahut, M.; Derrick, P. J. Eur. J. Mass Spectrom. 2012, 18,439. crossref(new window)

4.
Fisher, C. M.; Kharlamova, A.; McLuckey, S. A. Anal. Chem. 2014, 86, 4581. crossref(new window)

5.
Mortensen, D. N.; Williams, E. R. Anal. Chem.2015, 87, 1281. crossref(new window)

6.
Mortensen, D. N.; Williams, E. R. Anal. Chem. 2014, 86, 9315. crossref(new window)

7.
Fisher, C. M.; Hilger, R.T.; Zhao, F.; McLuckey, S. A.J. Mass Spectrom. 2015, 50, 1063. crossref(new window)

8.
Radionova, A.; Greenwood, D.; Demarais, N. J.; Willmott, G. and Derrick, P. J. NZIP 2015 Conference, Hamilton (New Zealand), 6-8 July 2015, p 35.

9.
Barrero, A.; Gañán-Calvo, A. M.; Dávila, J.; Palacio, A.; Gómez-González, E. Phys. Rev. 1998. E 58, 7309.

10.
Palmblad, M.; Håkansson, K.; Håkansson, P.; Feng, X.; Cooper, H.; Giannakopulos, A.; Green, P.; Derrick, P. Eur. J. Mass Spectrom. 2000, 6, 267. crossref(new window)

11.
Linke-Winnebeck, C.; Paterson, N. G.; Young, P. G.; Middleditch, M. J.; Greenwood, D. R.; Witte, G.; Baker, E. N. J. Bio. Chem. 2014, 289, 177. crossref(new window)